Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2023-02-03 DOI:10.1002/anie.202219299
Jiaqi Zhao, Ya Bai, Zhenhua Li, Dr. Jinjia Liu, Dr. Wei Wang, Pu Wang, Dr. Bei Yang, Dr. Run Shi, Prof. Geoffrey I. N. Waterhouse, Prof. Xiao-Dong Wen, Prof. Qing Dai, Prof. Tierui Zhang
{"title":"Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction","authors":"Jiaqi Zhao,&nbsp;Ya Bai,&nbsp;Zhenhua Li,&nbsp;Dr. Jinjia Liu,&nbsp;Dr. Wei Wang,&nbsp;Pu Wang,&nbsp;Dr. Bei Yang,&nbsp;Dr. Run Shi,&nbsp;Prof. Geoffrey I. N. Waterhouse,&nbsp;Prof. Xiao-Dong Wen,&nbsp;Prof. Qing Dai,&nbsp;Prof. Tierui Zhang","doi":"10.1002/anie.202219299","DOIUrl":null,"url":null,"abstract":"<p>The activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low-temperature water-gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light-induced hot electrons. Herein, we report a layered double hydroxide-derived copper catalyst (LD-Cu) with outstanding performance for the low-temperature photo-driven WGSR. LD-Cu offered a lower activation energy for WGSR to H<sub>2</sub> under UV/Vis irradiation (1.4 W cm<sup>−2</sup>) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H<sub>2</sub>O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H<sub>2</sub>. Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo-driven low-temperature WGSR catalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"62 13","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202219299","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

The activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low-temperature water-gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light-induced hot electrons. Herein, we report a layered double hydroxide-derived copper catalyst (LD-Cu) with outstanding performance for the low-temperature photo-driven WGSR. LD-Cu offered a lower activation energy for WGSR to H2 under UV/Vis irradiation (1.4 W cm−2) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H2O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H2. Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo-driven low-temperature WGSR catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低温光驱动水气移位反应的等离子体铜纳米粒子
热催化中水分子的活化通常需要较高的温度,这是低温水气转换反应(WGSR)催化剂开发的一个障碍。等离子体光催化允许在低温下通过产生光诱导的热电子激活水。本文报道了一种具有优异性能的层状双氢氧化物衍生铜催化剂(LD-Cu),用于低温光驱动WGSR。与黑暗条件下相比,LD-Cu在UV/Vis照射下为WGSR生成H2提供了较低的活化能(1.4 W cm−2)。详细的实验研究表明,高度分散的Cu纳米颗粒在光吸收过程中产生了大量的热电子,通过羧基途径促进*H2O解离和*H结合,从而有效地生成H2。结果表明,利用等离子体现象开发光驱动的低温WGSR催化剂是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
The Diarylprolinol Silyl Ethers: After 20 Years Still Opening New Doors in Asymmetric Catalysis Synergistic Molecular Locking Through Sodium‐Integrated Cross‐Linkable Scaffold Enables Durable Perovskite Solar Cells and Modules Lipid Modified with Pyridinium Betaine Manipulates Liposomal Membrane Fusion Behavior for Spatially Confined Cytoplasmic Delivery Yb 2 ‐Tb Upconversion in a Hetero‐Trimetallic Molecular Lanthanide Complex Towards More Robust Nanobioscience: Launching the NanoBubbles Replication Initiative
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1