Comparison of the Performance of Nonparametric and Parametric MANOVA Test Statistics when Assumptions Are Violated

Holmes W. Finch
{"title":"Comparison of the Performance of Nonparametric and Parametric MANOVA Test Statistics when Assumptions Are Violated","authors":"Holmes W. Finch","doi":"10.1027/1614-1881.1.1.27","DOIUrl":null,"url":null,"abstract":"Abstract. Multivariate analysis of variance (MANOVA) is a useful tool for social scientists because it allows for the comparison of response-variable means across multiple groups. MANOVA requires that the observations are independent, the response variables are multivariate normally distributed, and the covariance matrix of the response variables is homogeneous across groups. When the assumptions of normality and homogeneous covariance matrices are not met, past research has shown that the type I error rate of the standard MANOVA test statistics can be inflated while their power can be attenuated. The current study compares the performance of a nonparametric alternative to one of the standard parametric test statistics when these two assumptions are not met. Results show that when the assumption of homogeneous covariance matrices is not met, the nonparametric approach has a lower type I error rate and higher power than the most robust parametric statistic. When the assumption of normality is untenable, th...","PeriodicalId":18476,"journal":{"name":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","volume":"1 1","pages":"27-38"},"PeriodicalIF":2.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1027/1614-1881.1.1.27","citationCount":"212","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology: European Journal of Research Methods for The Behavioral and Social Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-1881.1.1.27","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 212

Abstract

Abstract. Multivariate analysis of variance (MANOVA) is a useful tool for social scientists because it allows for the comparison of response-variable means across multiple groups. MANOVA requires that the observations are independent, the response variables are multivariate normally distributed, and the covariance matrix of the response variables is homogeneous across groups. When the assumptions of normality and homogeneous covariance matrices are not met, past research has shown that the type I error rate of the standard MANOVA test statistics can be inflated while their power can be attenuated. The current study compares the performance of a nonparametric alternative to one of the standard parametric test statistics when these two assumptions are not met. Results show that when the assumption of homogeneous covariance matrices is not met, the nonparametric approach has a lower type I error rate and higher power than the most robust parametric statistic. When the assumption of normality is untenable, th...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
假设不符合时非参数和参数方差分析检验统计量性能的比较
摘要多元方差分析(MANOVA)对社会科学家来说是一个有用的工具,因为它允许对多个群体的反应变量均值进行比较。方差分析要求观测值是独立的,响应变量是多元正态分布的,响应变量的协方差矩阵在组间是齐次的。过去的研究表明,当正态性和齐次协方差矩阵的假设不满足时,标准方差分析检验统计量的I型错误率可能会膨胀,而其功率可能会减弱。当这两个假设不满足时,当前的研究比较了非参数替代方案与标准参数检验统计量之一的性能。结果表明,当协方差矩阵不满足齐次假设时,非参数方法比最稳健的参数统计具有更低的I型错误率和更高的功率。当正常的假设站不住脚时,……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
6.50%
发文量
16
审稿时长
36 weeks
期刊最新文献
Opaque prior distributions in Bayesian latent variable models Incorporating machine learning into factor mixture modeling: Identification of covariate interactions to explain population heterogeneity Bias and sensitivity analyses for linear front-door models Scaling metric measurement invariance models Extracting vocal characteristics and calculating vocal synchrony using Praat and R: A tutorial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1