A simulation procedure for the generation of samples to evaluate goodness of fit indices in item response theory models.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2011-04-15 DOI:10.1027/1614-2241/A000022
Edixon J. Chacón, Jesús M Alvarado, C. Santisteban
{"title":"A simulation procedure for the generation of samples to evaluate goodness of fit indices in item response theory models.","authors":"Edixon J. Chacón, Jesús M Alvarado, C. Santisteban","doi":"10.1027/1614-2241/A000022","DOIUrl":null,"url":null,"abstract":"The LISREL8.8/PRELIS2.81 program can carry out ordinal factorial analysis (OFA command), with full information maximum likelihood methods, in a data set containing n samples obtained by simulation. Nevertheless, when the replication number is greater than 1, an error command is produced, which impedes reaching solutions that can execute normal (NOR) and logistic (POM) functions. This paper proposes a new procedure of data simulation in PRELIS-LISREL. This procedure permits the generation of n replications and the calculation of the goodness of fit (GOF) indices in the item response theory (IRT) models for each replication, thus allowing the execution of the OFA command for Monte Carlo simulations. The solutions using underlying variable (weighted least squares (WLS) estimation method) and IRT approaches are compared.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

The LISREL8.8/PRELIS2.81 program can carry out ordinal factorial analysis (OFA command), with full information maximum likelihood methods, in a data set containing n samples obtained by simulation. Nevertheless, when the replication number is greater than 1, an error command is produced, which impedes reaching solutions that can execute normal (NOR) and logistic (POM) functions. This paper proposes a new procedure of data simulation in PRELIS-LISREL. This procedure permits the generation of n replications and the calculation of the goodness of fit (GOF) indices in the item response theory (IRT) models for each replication, thus allowing the execution of the OFA command for Monte Carlo simulations. The solutions using underlying variable (weighted least squares (WLS) estimation method) and IRT approaches are compared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
项目反应理论模型中拟合优度指标样本生成的模拟程序。
LISREL8.8/PRELIS2.81程序可以对模拟得到的n个样本的数据集进行全信息最大似然法的有序析因分析(OFA)命令。但是,当复制数大于1时,将产生一个错误命令,从而妨碍找到可以执行正常(NOR)和逻辑(POM)功能的解决方案。本文提出了一种新的PRELIS-LISREL数据模拟程序。该程序允许生成n个重复,并为每个复制计算项目反应理论(IRT)模型中的拟合优度(GOF)指数,从而允许执行蒙特卡罗模拟的OFA命令。比较了底层变量加权最小二乘估计方法和IRT方法的求解结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1