{"title":"A Note on the Connection Between Knowledge Structures and Latent Class Models","authors":"A. Ünlü","doi":"10.1027/1614-2241/A000023","DOIUrl":null,"url":null,"abstract":"Schrepp (2005) points out and builds upon the connection between knowledge space theory (KST) and latent class analysis (LCA) to propose a method for constructing knowledge structures from data. Candidate knowledge structures are generated, they are considered as restricted latent class models and fitted to the data, and the BIC is used to choose among them. This article adds additional information about the relationship between KST and LCA. It gives a more comprehensive overview of the literature and the probabilistic models that are at the interface of KST and LCA. KST and LCA are also compared with regard to parameter estimation and model testing methodologies applied in their fields. This article concludes with an overview of KST-related publications addressing the outlined connection and presents further remarks about possible future research arising from a connection of KST to other latent variable modeling approaches.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 13
Abstract
Schrepp (2005) points out and builds upon the connection between knowledge space theory (KST) and latent class analysis (LCA) to propose a method for constructing knowledge structures from data. Candidate knowledge structures are generated, they are considered as restricted latent class models and fitted to the data, and the BIC is used to choose among them. This article adds additional information about the relationship between KST and LCA. It gives a more comprehensive overview of the literature and the probabilistic models that are at the interface of KST and LCA. KST and LCA are also compared with regard to parameter estimation and model testing methodologies applied in their fields. This article concludes with an overview of KST-related publications addressing the outlined connection and presents further remarks about possible future research arising from a connection of KST to other latent variable modeling approaches.