{"title":"A Hierarchical Bayesian Model With Correlated Residuals for Investigating Stability and Change in Intensive Longitudinal Data Settings","authors":"F. Gasimova, A. Robitzsch, O. Wilhelm, G. Hülür","doi":"10.1027/1614-2241/A000083","DOIUrl":null,"url":null,"abstract":"The present paper’s focus is the modeling of interindividual and intraindividual variability in longitudinal data. We propose a hierarchical Bayesian model with correlated residuals, employing an autoregressive parameter AR(1) for focusing on intraindividual variability. The hierarchical model possesses four individual random effects: intercept, slope, variability, and autocorrelation. The performance of the proposed Bayesian estimation is investigated in simulated longitudinal data with three different sample sizes (N = 100, 200, 500) and three different numbers of measurement points (T = 10, 20, 40). The initial simulation values are selected according to the results of the first 20 measurement occasions from a longitudinal study on working memory capacity in 9th graders. Within this simulation study, we investigate the root mean square error (RMSE), bias, relative percentage bias, and the 90% coverage probability of parameter estimates. Results indicate that more accurate estimates are associated with ...","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8
Abstract
The present paper’s focus is the modeling of interindividual and intraindividual variability in longitudinal data. We propose a hierarchical Bayesian model with correlated residuals, employing an autoregressive parameter AR(1) for focusing on intraindividual variability. The hierarchical model possesses four individual random effects: intercept, slope, variability, and autocorrelation. The performance of the proposed Bayesian estimation is investigated in simulated longitudinal data with three different sample sizes (N = 100, 200, 500) and three different numbers of measurement points (T = 10, 20, 40). The initial simulation values are selected according to the results of the first 20 measurement occasions from a longitudinal study on working memory capacity in 9th graders. Within this simulation study, we investigate the root mean square error (RMSE), bias, relative percentage bias, and the 90% coverage probability of parameter estimates. Results indicate that more accurate estimates are associated with ...