The Impact of the Number of Dyads on Estimation of Dyadic Data Analysis Using Multilevel Modeling

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2016-04-01 DOI:10.1027/1614-2241/A000105
H. Du, Lijuan Wang
{"title":"The Impact of the Number of Dyads on Estimation of Dyadic Data Analysis Using Multilevel Modeling","authors":"H. Du, Lijuan Wang","doi":"10.1027/1614-2241/A000105","DOIUrl":null,"url":null,"abstract":"Abstract. Dyadic data often appear in social and behavioral research, and multilevel models (MLMs) can be used to analyze them. For dyadic data, the group size is 2, which is the minimum group size we could have for fitting a multilevel model. This Monte Carlo study examines the effects of the number of dyads, the intraclass correlation (ICC), the proportion of singletons, and the missingness mechanism on convergence, bias, coverage rates, and Type I error rates of parameter estimates of dyadic data analysis using MLMs. Results showed that the estimation of variance components could have nonconvergence problems, nonignorable bias, and deviated coverage rates from nominal values when ICC is low, the proportion of singletons is high, and/or the number of dyads is small. More dyads helped obtain more reliable and valid estimates. Sample size guidelines based on the simulation model are given and discussed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 23

Abstract

Abstract. Dyadic data often appear in social and behavioral research, and multilevel models (MLMs) can be used to analyze them. For dyadic data, the group size is 2, which is the minimum group size we could have for fitting a multilevel model. This Monte Carlo study examines the effects of the number of dyads, the intraclass correlation (ICC), the proportion of singletons, and the missingness mechanism on convergence, bias, coverage rates, and Type I error rates of parameter estimates of dyadic data analysis using MLMs. Results showed that the estimation of variance components could have nonconvergence problems, nonignorable bias, and deviated coverage rates from nominal values when ICC is low, the proportion of singletons is high, and/or the number of dyads is small. More dyads helped obtain more reliable and valid estimates. Sample size guidelines based on the simulation model are given and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二元数对多层次模型二元数据分析估计的影响
摘要二元数据经常出现在社会和行为研究中,多层次模型(MLMs)可以用来分析二元数据。对于二元数据,组大小为2,这是我们可以拟合多层模型的最小组大小。这项蒙特卡罗研究考察了二元数、类内相关(ICC)、单子比例和缺失机制对使用mlm的二元数据分析参数估计的收敛性、偏差、覆盖率和I型错误率的影响。结果表明,当ICC较低、单例比例较高和/或双例数量较少时,方差分量的估计可能存在非收敛问题、不可忽略的偏差和偏离标称值的覆盖率。更多的二对有助于获得更可靠和有效的估计。给出并讨论了基于仿真模型的样本量准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1