Numerical methods with controlled dissipation for small-scale dependent shocks*

IF 16.3 1区 数学 Q1 MATHEMATICS Acta Numerica Pub Date : 2013-12-04 DOI:10.1017/S0962492914000099
P. LeFloch, Siddhartha Mishra
{"title":"Numerical methods with controlled dissipation for small-scale dependent shocks*","authors":"P. LeFloch, Siddhartha Mishra","doi":"10.1017/S0962492914000099","DOIUrl":null,"url":null,"abstract":"We provide a ‘user guide’ to the literature of the past twenty years concerning the modelling and approximation of discontinuous solutions to nonlinear hyperbolic systems that admit small-scale dependent shock waves. We cover several classes of problems and solutions: nonclassical undercompressive shocks, hyperbolic systems in nonconservative form, and boundary layer problems. We review the relevant models arising in continuum physics and describe the numerical methods that have been proposed to capture small-scale dependent solutions. In agreement with general well-posedness theory, small-scale dependent solutions are characterized by a kinetic relation, a family of paths, or an admissible boundary set. We provide a review of numerical methods (front-tracking schemes, finite difference schemes, finite volume schemes), which, at the discrete level, reproduce the effect of the physically meaningful dissipation mechanisms of interest in the applications. An essential role is played by the equivalent equation associated with discrete schemes, which is found to be relevant even for solutions containing shock waves.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"23 1","pages":"743 - 816"},"PeriodicalIF":16.3000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0962492914000099","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492914000099","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28

Abstract

We provide a ‘user guide’ to the literature of the past twenty years concerning the modelling and approximation of discontinuous solutions to nonlinear hyperbolic systems that admit small-scale dependent shock waves. We cover several classes of problems and solutions: nonclassical undercompressive shocks, hyperbolic systems in nonconservative form, and boundary layer problems. We review the relevant models arising in continuum physics and describe the numerical methods that have been proposed to capture small-scale dependent solutions. In agreement with general well-posedness theory, small-scale dependent solutions are characterized by a kinetic relation, a family of paths, or an admissible boundary set. We provide a review of numerical methods (front-tracking schemes, finite difference schemes, finite volume schemes), which, at the discrete level, reproduce the effect of the physically meaningful dissipation mechanisms of interest in the applications. An essential role is played by the equivalent equation associated with discrete schemes, which is found to be relevant even for solutions containing shock waves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小尺度相关冲击可控耗散的数值方法*
我们提供了一个“用户指南”,过去二十年的文献关于非线性双曲系统的不连续解的建模和近似,允许小尺度依赖激波。我们涵盖了几类问题和解决方案:非经典欠压冲击,非保守形式的双曲系统,和边界层问题。我们回顾了连续介质物理学中出现的相关模型,并描述了已经提出的用于捕获小尺度依赖解的数值方法。与一般适定性理论一致,小尺度依赖解具有动力学关系、路径族或可容许边界集的特征。我们提供了一个回顾的数值方法(前跟踪方案,有限差分方案,有限体积方案),其中,在离散水平,再现感兴趣的应用中物理上有意义的耗散机制的影响。与离散格式相关的等效方程起着至关重要的作用,即使对于包含激波的解,它也是相关的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Numerica
Acta Numerica MATHEMATICS-
CiteScore
26.00
自引率
0.70%
发文量
7
期刊介绍: Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses. Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.
期刊最新文献
Splitting methods for differential equations Adaptive finite element methods The geometry of monotone operator splitting methods Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning Optimal experimental design: Formulations and computations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1