Enzyme-Powered Micro/Nanomotors for Cancer Treatment

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2022-06-08 DOI:10.1002/asia.202200498
Xi Wang, Dang Zhang, Yu Bai, Dr. Jian Zhang, Prof.?Dr. Lei Wang
{"title":"Enzyme-Powered Micro/Nanomotors for Cancer Treatment","authors":"Xi Wang,&nbsp;Dang Zhang,&nbsp;Yu Bai,&nbsp;Dr. Jian Zhang,&nbsp;Prof.?Dr. Lei Wang","doi":"10.1002/asia.202200498","DOIUrl":null,"url":null,"abstract":"<p>The incidence and lethal rate of cancers are rapidly rising recently, however current treatments of cancers, such as surgical resection, radiotherapy, chemotherapy and targeted therapy, usually require long treatment period and have more side effects and high recurrence rate. Enzyme-powered micro/nanomotors (EMNMs), with powerful self-propulsion, enhanced permeability and good biocompatibility, have shown great potential in crossing biological barrier and targeted drug transportation for cancer treatment; moreover, advanced approaches based on EMNMs such as photothermal therapy and starvation therapy have also been widely explored in cancer treatment. Although there are several review works discussing the progress of micro/nanomotors for biomedical applications, there is not one review paper with the focus on the cancer treatment based on EMNMs. Therefore, in this review, we try to concisely and timely summarize the recent progress of cancer treatment based on enzyme-driven micro/nanomotors, such as brain tumors, bladder cancer, breast cancer and others. Finally, the challenges and outlook of cancer therapy based on EMNMs are discussed, hoping to provide fundamental guidance for the future development.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":"17 16","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asia.202200498","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

The incidence and lethal rate of cancers are rapidly rising recently, however current treatments of cancers, such as surgical resection, radiotherapy, chemotherapy and targeted therapy, usually require long treatment period and have more side effects and high recurrence rate. Enzyme-powered micro/nanomotors (EMNMs), with powerful self-propulsion, enhanced permeability and good biocompatibility, have shown great potential in crossing biological barrier and targeted drug transportation for cancer treatment; moreover, advanced approaches based on EMNMs such as photothermal therapy and starvation therapy have also been widely explored in cancer treatment. Although there are several review works discussing the progress of micro/nanomotors for biomedical applications, there is not one review paper with the focus on the cancer treatment based on EMNMs. Therefore, in this review, we try to concisely and timely summarize the recent progress of cancer treatment based on enzyme-driven micro/nanomotors, such as brain tumors, bladder cancer, breast cancer and others. Finally, the challenges and outlook of cancer therapy based on EMNMs are discussed, hoping to provide fundamental guidance for the future development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于癌症治疗的酶驱动微/纳米马达
近年来,癌症的发病率和致死率迅速上升,但目前的癌症治疗方法,如手术切除、放疗、化疗、靶向治疗等,治疗周期长,副作用大,复发率高。酶动力微纳米马达(EMNMs)具有强大的自推进力、增强的渗透性和良好的生物相容性,在跨越生物屏障和靶向药物运输方面具有很大的潜力。此外,基于EMNMs的先进方法如光热疗法和饥饿疗法也在癌症治疗中得到了广泛的探索。虽然已有多篇综述文章讨论了微纳米马达在生物医学领域的应用进展,但尚未有一篇综述文章关注基于微纳米马达的癌症治疗。因此,本文就酶驱动微纳米运动在脑肿瘤、膀胱癌、乳腺癌等肿瘤治疗方面的最新进展进行简要、及时的综述。最后讨论了基于EMNMs的肿瘤治疗面临的挑战和前景,希望为未来的发展提供基础性指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
A Comparative Evaluation of Leaching Reagents of Platinum Group Metals from Spent Catalytic Converters Using Microwave Heating. Exploring the Fluorination and Hydroxylation of Pore-space-partitioned Metal‒Organic Frameworks for C2H2/CH4 Separation. Giant Seebeck Effect of Dibenzo[g,p]chrysene and its Derivatives: Deuteration and Substituent Effects and Relationship with Interlayer Distance. Lanthanide-based Metal-organic Frameworks Offering Hydrogen Bonding Cavities: Luminescent Characteristics and Sensing Applications. Metal Organic Framework Based on Photoactivated Aggregation-Induced Emission Molecule for Achieving Photoexcitation Regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1