From rock-boring organisms to tunnel boring machines: A new rock breaking technology by bioinspiration

IF 1.6 Q4 ENGINEERING, BIOMEDICAL Biosurface and Biotribology Pub Date : 2021-09-17 DOI:10.1049/bsb2.12025
Jing Zheng, Zhixin Wu, Jiahui Nie, Lei Lei, Zhongrong Zhou, Jianbin Li
{"title":"From rock-boring organisms to tunnel boring machines: A new rock breaking technology by bioinspiration","authors":"Jing Zheng,&nbsp;Zhixin Wu,&nbsp;Jiahui Nie,&nbsp;Lei Lei,&nbsp;Zhongrong Zhou,&nbsp;Jianbin Li","doi":"10.1049/bsb2.12025","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this study is to achieve better understanding of associated mechanisms and to recommend and identify new strategies to develop new rock breaking technology for Tunnel Boring Machines (TBMs). Tunnel Boring Machine tunnelling mainly depends upon the rock breakage caused by cutters moving on a rock surface in a rolling and sliding motion while under the action of thrust force. The rock breaking behaviour is controlled by the mechanical interaction between the cutters and the rock. Due to the high hardness and high abrasiveness of rock, the cutters have to work under very high thrust force and suffer heavy-load-impact and abrasive wear, causing serious wear and low rock breaking efficiency. Rock-boring organisms exist in nature, which achieve drilling and/or tunnelling in rocks through a tribochemical interaction. This phenomenon is called bioerosion and the organisms are natural ‘TBMs’ to some degree. In this study, the interaction between TBM cutters and rock is presented, and current measures to improve cutter wear and rock breaking efficiency and their limitations are reported. Then, the connotation, mechanism and typical cases of bioerosion are presented. Finally, inspired by bioerosion, a new chemically assisted rock breaking technology is proposed for TBMs.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"7 4","pages":"233-238"},"PeriodicalIF":1.6000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to achieve better understanding of associated mechanisms and to recommend and identify new strategies to develop new rock breaking technology for Tunnel Boring Machines (TBMs). Tunnel Boring Machine tunnelling mainly depends upon the rock breakage caused by cutters moving on a rock surface in a rolling and sliding motion while under the action of thrust force. The rock breaking behaviour is controlled by the mechanical interaction between the cutters and the rock. Due to the high hardness and high abrasiveness of rock, the cutters have to work under very high thrust force and suffer heavy-load-impact and abrasive wear, causing serious wear and low rock breaking efficiency. Rock-boring organisms exist in nature, which achieve drilling and/or tunnelling in rocks through a tribochemical interaction. This phenomenon is called bioerosion and the organisms are natural ‘TBMs’ to some degree. In this study, the interaction between TBM cutters and rock is presented, and current measures to improve cutter wear and rock breaking efficiency and their limitations are reported. Then, the connotation, mechanism and typical cases of bioerosion are presented. Finally, inspired by bioerosion, a new chemically assisted rock breaking technology is proposed for TBMs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从钻岩生物到隧道掘进机:生物灵感破岩新技术
本研究的目的是更好地理解相关机制,并建议和确定开发隧道掘进机(tbm)新破岩技术的新策略。隧道掘进机掘进主要依靠切削齿在推力作用下在岩石表面作滚动和滑动运动而破岩。岩石破碎行为是由切削齿和岩石之间的机械相互作用控制的。由于岩石的高硬度和高磨蚀性,切削齿必须在非常大的推力下工作,承受重载荷冲击和磨粒磨损,导致磨损严重,破岩效率低。岩石钻孔生物存在于自然界中,它们通过摩擦化学相互作用在岩石中实现钻孔和/或隧道掘进。这种现象被称为生物侵蚀,在某种程度上,这些生物是天然的“tbm”。在这项研究中,提出了TBM刀具与岩石的相互作用,并报告了目前改善刀具磨损和破岩效率的措施及其局限性。然后,介绍了生物侵蚀的内涵、机理和典型案例。最后,受生物侵蚀的启发,提出了一种新的化学辅助破岩技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
期刊最新文献
Protein hydrogels for biomedical applications Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces Advancements and challenges in bionic joint lubrication biomaterials for sports medicine Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1