Big Data stream processing

Yidan Wang, M. HoseinyFarahabady, Z. Tari, Albert Y. Zomaya
{"title":"Big Data stream processing","authors":"Yidan Wang, M. HoseinyFarahabady, Z. Tari, Albert Y. Zomaya","doi":"10.1049/PBPC015E_CH7","DOIUrl":null,"url":null,"abstract":"At the beginning of twenty-first century, the research interest of a new model of streamlined data processing has been arising, involving a huge volume of data in today's market that makes it impossible to store and process data along with the traditional way. Data stream processing (DSP) is a data computational paradigm that enables the real-time processing of continuous data streams instead of maintaining the static relationship among them. In this model, a large volume of raw tuple of data enters in a rapid, continuous, and streaming manner to the ecosystem. Such a set of streams is unbounded in size, while the data arrival time and data processing time have an online nature.","PeriodicalId":30498,"journal":{"name":"International Journal of Open Information Technologies","volume":"1 1","pages":"139-158"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBPC015E_CH7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

At the beginning of twenty-first century, the research interest of a new model of streamlined data processing has been arising, involving a huge volume of data in today's market that makes it impossible to store and process data along with the traditional way. Data stream processing (DSP) is a data computational paradigm that enables the real-time processing of continuous data streams instead of maintaining the static relationship among them. In this model, a large volume of raw tuple of data enters in a rapid, continuous, and streaming manner to the ecosystem. Such a set of streams is unbounded in size, while the data arrival time and data processing time have an online nature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据流处理
21世纪初,一种新的流线型数据处理模式引起了人们的研究兴趣,当今市场上的海量数据已经无法按照传统的方式存储和处理数据。数据流处理(DSP)是一种数据计算范式,它能够实时处理连续的数据流,而不是保持数据流之间的静态关系。在这个模型中,大量的原始数据元组以快速、连续和流的方式进入生态系统。这样的流集在大小上是无界的,而数据到达时间和数据处理时间具有在线的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
217
审稿时长
4 weeks
期刊最新文献
Computerized visualization of the Russian language picture of the world Трудящиеся-мигранты и пандемия COVID-19 КОНЦЕПЦИЯ ЗАЩИТЫ ОБЪЕКТОВ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПОЛУЧЕННЫХ С ПОМОЩЬЮ ТЕХНОЛОГИЙ ВИРТУАЛЬНОЙ И ДОПОЛНЕННОЙ РЕАЛЬНОСТИ Оценка готовности персонала организации к принятию изменений в условиях цифровой экономики Трансформация промышленности в цифровой экономике: проблемы и перспективы
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1