U-slot patch antenna with low RCS based on a metaferrite substrate

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY EPJ Applied Metamaterials Pub Date : 2019-01-01 DOI:10.1051/epjam/2019020
Yujie Liu, P. Beal, H. Giddens, Y. Hao
{"title":"U-slot patch antenna with low RCS based on a metaferrite substrate","authors":"Yujie Liu, P. Beal, H. Giddens, Y. Hao","doi":"10.1051/epjam/2019020","DOIUrl":null,"url":null,"abstract":"Metamaterial ferrites or metaferrites are artificial magnetic materials which mimic the properties of ferrites at a certain frequency operation. Antenna engineers are therefore able to design and create artificial substrates which replicate the electrical properties of ferrites without actually using any in the construction. This is advantageous as ferrites can offer performance improvements to microstrip antennas, such as size reduction and wideband impedance matching. In this paper, a metaferrite substrate designed by the use of a genetic algorithm is presented. The metaferrite was optimized in order to obtain the magnetic responses at 9GHz, for its use as the substrate of a microstrip antenna. As an example, a U-slot patch antenna based on the metaferrite is demonstrated, which can achieve stable radiation and 14 dB radar cross section (RCS) reduction performance in the measurement.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjam/2019020","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjam/2019020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Metamaterial ferrites or metaferrites are artificial magnetic materials which mimic the properties of ferrites at a certain frequency operation. Antenna engineers are therefore able to design and create artificial substrates which replicate the electrical properties of ferrites without actually using any in the construction. This is advantageous as ferrites can offer performance improvements to microstrip antennas, such as size reduction and wideband impedance matching. In this paper, a metaferrite substrate designed by the use of a genetic algorithm is presented. The metaferrite was optimized in order to obtain the magnetic responses at 9GHz, for its use as the substrate of a microstrip antenna. As an example, a U-slot patch antenna based on the metaferrite is demonstrated, which can achieve stable radiation and 14 dB radar cross section (RCS) reduction performance in the measurement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超铁氧体衬底的低RCS u槽贴片天线
超材料铁氧体或超铁氧体是在一定频率下模拟铁氧体性质的人工磁性材料。因此,天线工程师能够设计和制造人造基板,复制铁氧体的电性能,而无需在施工中实际使用铁氧体。这是有利的,因为铁氧体可以提供微带天线的性能改进,如尺寸缩小和宽带阻抗匹配。本文提出了一种利用遗传算法设计的超铁氧体衬底。对超铁氧体进行了优化,以获得其作为微带天线衬底的9GHz磁响应。以超铁氧体为基础的u槽贴片天线为例,在测量中实现了稳定的辐射和14db雷达截面(RCS)降低性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Applied Metamaterials
EPJ Applied Metamaterials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
6.20%
发文量
16
审稿时长
8 weeks
期刊最新文献
Safe energy-storage mechanical metamaterials via architecture design Thin layers of microwave absorbing metamaterials with carbon fibers and FeSi alloy ribbons to enhance the absorption properties Applications of negative permeability metamaterials for electromagnetic resonance type wireless power transfer systems An ultrathin and flexible terahertz electromagnetically induced transparency-like metasurface based on asymmetric resonators Reflection and transmission of nanoresonators including bi-isotropic and metamaterial layers: opportunities to control and amplify chiral and nonreciprocal effects for nanophotonics applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1