Epsilon-negative media from the viewpoint of materials science

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY EPJ Applied Metamaterials Pub Date : 2021-01-01 DOI:10.1051/EPJAM/2021005
Guohua Fan, Kai Sun, Qing Hou, Zhongyang Wang, Yao Liu, R. Fan
{"title":"Epsilon-negative media from the viewpoint of materials science","authors":"Guohua Fan, Kai Sun, Qing Hou, Zhongyang Wang, Yao Liu, R. Fan","doi":"10.1051/EPJAM/2021005","DOIUrl":null,"url":null,"abstract":"A comprehensive review of the fundamentals and applications of epsilon-negative materials is presented in this paper. Percolative composites, as well as homogeneous ceramics or polymers, have been investigated to obtain the tailorable epsilon-negative properties. It's confirmed the anomalous epsilon-negative property can be realized in conventional materials. Meanwhile, from the perspective of materials science, the relationship between the negative permittivity and the composition and microstructure of materials has been clarified. It's demonstrated that the epsilon-negative performance is attributed to the plasmonic response of delocalized electrons within the materials and can be modulated by it. Moreover, the potential applications of epsilon-negative materials in electromagnetic interference shielding, laminated composites for multilayered capacitance, coil-less electric inductors, and epsilon-near-zero metamaterials are reviewed. The development of epsilon-negative materials has enriched the connotation of metamaterials and advanced functional materials, and has accelerated the integration of metamaterials and natural materials.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EPJAM/2021005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15

Abstract

A comprehensive review of the fundamentals and applications of epsilon-negative materials is presented in this paper. Percolative composites, as well as homogeneous ceramics or polymers, have been investigated to obtain the tailorable epsilon-negative properties. It's confirmed the anomalous epsilon-negative property can be realized in conventional materials. Meanwhile, from the perspective of materials science, the relationship between the negative permittivity and the composition and microstructure of materials has been clarified. It's demonstrated that the epsilon-negative performance is attributed to the plasmonic response of delocalized electrons within the materials and can be modulated by it. Moreover, the potential applications of epsilon-negative materials in electromagnetic interference shielding, laminated composites for multilayered capacitance, coil-less electric inductors, and epsilon-near-zero metamaterials are reviewed. The development of epsilon-negative materials has enriched the connotation of metamaterials and advanced functional materials, and has accelerated the integration of metamaterials and natural materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从材料科学的角度看负负介质
本文对负材料的基本原理和应用作了全面的综述。渗透复合材料,以及均相陶瓷或聚合物,已经进行了研究,以获得合适的负的性质。证实了在常规材料中可以实现反常的负性质。同时,从材料科学的角度阐明了负介电常数与材料的组成和微观结构之间的关系。证明了负的epsilon性能是由材料内部离域电子的等离子体响应引起的,并且可以被它调制。此外,综述了epsilon负材料在电磁干扰屏蔽、多层电容层合复合材料、无线圈电感器和epsilon近零超材料等方面的潜在应用。负epsiln材料的发展丰富了超材料和先进功能材料的内涵,加速了超材料与天然材料的融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Applied Metamaterials
EPJ Applied Metamaterials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
6.20%
发文量
16
审稿时长
8 weeks
期刊最新文献
Safe energy-storage mechanical metamaterials via architecture design Thin layers of microwave absorbing metamaterials with carbon fibers and FeSi alloy ribbons to enhance the absorption properties Applications of negative permeability metamaterials for electromagnetic resonance type wireless power transfer systems An ultrathin and flexible terahertz electromagnetically induced transparency-like metasurface based on asymmetric resonators Reflection and transmission of nanoresonators including bi-isotropic and metamaterial layers: opportunities to control and amplify chiral and nonreciprocal effects for nanophotonics applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1