A high-efficiency and ultrathin transmission-type circular polarization converter based on surface structure

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY EPJ Applied Metamaterials Pub Date : 2021-01-01 DOI:10.1051/EPJAM/2021002
Peng Xu, W. Jiang, Xiao Cai, Y. Gou, T. Cui
{"title":"A high-efficiency and ultrathin transmission-type circular polarization converter based on surface structure","authors":"Peng Xu, W. Jiang, Xiao Cai, Y. Gou, T. Cui","doi":"10.1051/EPJAM/2021002","DOIUrl":null,"url":null,"abstract":"In this paper, we propose, design and fabricate a kind of ultrathin and high-efficiency circularly polarization converter based on artificially engineered surfaces in the transmission mode. The converter is composed of double-layer periodic surface structures with cross slots. The top and bottom layers are printed on both sides of the F4B substrate and connected by metallic via holes. The proposed converter can transform the right-handed circularly polarized incident electromagnetic (EM) wave to a left-handed circularly-polarized one with near-unity efficiency in the transmission mode, or vice versa. We explain the conversion mechanism based on numerical simulations and equivalent circuit (EC) theory. The measured result has a good agreement with the simulated one in the working frequency band. Such ultrathin polarization converters can be used in wireless microwave communication, remote sensing, and EM imaging where circularly polarization diversity is needed.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EPJAM/2021002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose, design and fabricate a kind of ultrathin and high-efficiency circularly polarization converter based on artificially engineered surfaces in the transmission mode. The converter is composed of double-layer periodic surface structures with cross slots. The top and bottom layers are printed on both sides of the F4B substrate and connected by metallic via holes. The proposed converter can transform the right-handed circularly polarized incident electromagnetic (EM) wave to a left-handed circularly-polarized one with near-unity efficiency in the transmission mode, or vice versa. We explain the conversion mechanism based on numerical simulations and equivalent circuit (EC) theory. The measured result has a good agreement with the simulated one in the working frequency band. Such ultrathin polarization converters can be used in wireless microwave communication, remote sensing, and EM imaging where circularly polarization diversity is needed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于表面结构的高效超薄透射型圆偏振变换器
本文提出、设计并制造了一种基于人工工程表面的超薄高效圆偏振变换器。该变换器由带交叉槽的双层周期表面结构组成。顶层和底层印刷在F4B基板的两侧,并通过金属通孔连接。该变换器可以在传输模式下以接近单位的效率将右手圆极化入射电磁波转换为左手圆极化入射电磁波,反之亦然。我们基于数值模拟和等效电路理论解释了转换机理。在工作频段内,实测结果与仿真结果吻合较好。这种超薄极化变换器可用于无线微波通信、遥感和电磁成像等需要圆极化分集的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Applied Metamaterials
EPJ Applied Metamaterials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
6.20%
发文量
16
审稿时长
8 weeks
期刊最新文献
Safe energy-storage mechanical metamaterials via architecture design Thin layers of microwave absorbing metamaterials with carbon fibers and FeSi alloy ribbons to enhance the absorption properties Applications of negative permeability metamaterials for electromagnetic resonance type wireless power transfer systems An ultrathin and flexible terahertz electromagnetically induced transparency-like metasurface based on asymmetric resonators Reflection and transmission of nanoresonators including bi-isotropic and metamaterial layers: opportunities to control and amplify chiral and nonreciprocal effects for nanophotonics applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1