{"title":"A high-efficiency and ultrathin transmission-type circular polarization converter based on surface structure","authors":"Peng Xu, W. Jiang, Xiao Cai, Y. Gou, T. Cui","doi":"10.1051/EPJAM/2021002","DOIUrl":null,"url":null,"abstract":"In this paper, we propose, design and fabricate a kind of ultrathin and high-efficiency circularly polarization converter based on artificially engineered surfaces in the transmission mode. The converter is composed of double-layer periodic surface structures with cross slots. The top and bottom layers are printed on both sides of the F4B substrate and connected by metallic via holes. The proposed converter can transform the right-handed circularly polarized incident electromagnetic (EM) wave to a left-handed circularly-polarized one with near-unity efficiency in the transmission mode, or vice versa. We explain the conversion mechanism based on numerical simulations and equivalent circuit (EC) theory. The measured result has a good agreement with the simulated one in the working frequency band. Such ultrathin polarization converters can be used in wireless microwave communication, remote sensing, and EM imaging where circularly polarization diversity is needed.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EPJAM/2021002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose, design and fabricate a kind of ultrathin and high-efficiency circularly polarization converter based on artificially engineered surfaces in the transmission mode. The converter is composed of double-layer periodic surface structures with cross slots. The top and bottom layers are printed on both sides of the F4B substrate and connected by metallic via holes. The proposed converter can transform the right-handed circularly polarized incident electromagnetic (EM) wave to a left-handed circularly-polarized one with near-unity efficiency in the transmission mode, or vice versa. We explain the conversion mechanism based on numerical simulations and equivalent circuit (EC) theory. The measured result has a good agreement with the simulated one in the working frequency band. Such ultrathin polarization converters can be used in wireless microwave communication, remote sensing, and EM imaging where circularly polarization diversity is needed.