{"title":"Genetic discrimination of wild versus farmed gilthead sea bream Sparus aurata using microsatellite markers associated with candidate genes","authors":"Iva Žužul , Leon Grubišić , Tanja Šegvić-Bubić , Costas Tsigenopoulos","doi":"10.1051/alr/2022009","DOIUrl":null,"url":null,"abstract":"<div><div>Farm escapees and their offspring impose a significant impact on the environment and may therefore alter the future evolutionary trajectories of wild populations. To date, there is no management plan in place in Mediterranean countries to prevent fish escapes. Here, we investigate microsatellite length variations in three candidate genes, including prolactin (PRL), growth hormone (GH), and the receptor activity modifying protein 3 gene (RAMP3), to study the genetic structure of the main fish species farmed in the Mediterranean, gilthead seabream (<em>Sparus aurata</em>). We also evaluate the performance of microsatellites in discriminating fish origin (wild or farmed). Results from 298 individuals, including farmed, wild adult and juvenile fish were compared with results from 19 neutral markers used in a previous study. All loci were polymorphic, selectively neutral, and had the statistical power to detect significant population differentiation. Global FST was similar to that estimated using 19 loci (0.019 and 0.023, respectively), while pairwise comparisons identified farmed populations as the main drivers of genetic divergence, with a much higher magnitude of overall genetic differentiation within farmed populations (0.076) than that estimated using the 19 neutral microsatellite loci (0.041). Bayesian structural analysis showed that the PRL, GH, and RAMP3 markers were able to distinguish farmed from wild populations, but were not able to distinguish different wild groups as 19 neutral microsatellite markers did. Farmed populations of different origins were assigned to a separate cluster with a high individual assignment score (>88%). It appears that the candidate markers are more influenced by artificial selection compared to neutral markers. Further validation of their efficiency in discriminating wild, farmed, and mixed fish origins using a more robust sample size is needed to ensure their potential use in an escaped fish monitoring programme.</div></div>","PeriodicalId":55491,"journal":{"name":"Aquatic Living Resources","volume":"35 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Living Resources","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1765295222000174","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Farm escapees and their offspring impose a significant impact on the environment and may therefore alter the future evolutionary trajectories of wild populations. To date, there is no management plan in place in Mediterranean countries to prevent fish escapes. Here, we investigate microsatellite length variations in three candidate genes, including prolactin (PRL), growth hormone (GH), and the receptor activity modifying protein 3 gene (RAMP3), to study the genetic structure of the main fish species farmed in the Mediterranean, gilthead seabream (Sparus aurata). We also evaluate the performance of microsatellites in discriminating fish origin (wild or farmed). Results from 298 individuals, including farmed, wild adult and juvenile fish were compared with results from 19 neutral markers used in a previous study. All loci were polymorphic, selectively neutral, and had the statistical power to detect significant population differentiation. Global FST was similar to that estimated using 19 loci (0.019 and 0.023, respectively), while pairwise comparisons identified farmed populations as the main drivers of genetic divergence, with a much higher magnitude of overall genetic differentiation within farmed populations (0.076) than that estimated using the 19 neutral microsatellite loci (0.041). Bayesian structural analysis showed that the PRL, GH, and RAMP3 markers were able to distinguish farmed from wild populations, but were not able to distinguish different wild groups as 19 neutral microsatellite markers did. Farmed populations of different origins were assigned to a separate cluster with a high individual assignment score (>88%). It appears that the candidate markers are more influenced by artificial selection compared to neutral markers. Further validation of their efficiency in discriminating wild, farmed, and mixed fish origins using a more robust sample size is needed to ensure their potential use in an escaped fish monitoring programme.
期刊介绍:
Aquatic Living Resources publishes original research papers, review articles and propective notes dealing with all exploited (i.e. fished or farmed) living resources in marine, brackish and freshwater environments.
Priority is given to ecosystem-based approaches to the study of fishery and aquaculture social-ecological systems, including biological, ecological, economic and social dimensions.
Research on the development of interdisciplinary methods and tools which can usefully support the design, implementation and evaluation of alternative management strategies for fisheries and/or aquaculture systems at different scales is particularly welcome by the journal. This includes the exploration of scenarios and strategies for the conservation of aquatic biodiversity and research relating to the development of integrated assessment approaches aimed at ensuring sustainable and high quality uses of aquatic living resources.