Device simulation of all-perovskite four-terminal tandem solar cells: towards 33% efficiency

IF 1.9 Q3 PHYSICS, APPLIED EPJ Photovoltaics Pub Date : 2021-01-01 DOI:10.1051/epjpv/2021004
Ajay Singh, A. Gagliardi
{"title":"Device simulation of all-perovskite four-terminal tandem solar cells: towards 33% efficiency","authors":"Ajay Singh, A. Gagliardi","doi":"10.1051/epjpv/2021004","DOIUrl":null,"url":null,"abstract":"Inorganic–organic hybrid perovskites offer wide optical absorption, long charge carrier diffusion length, and high optical-to-electrical conversion, enabling more than 25% efficiency of single-junction perovskite solar cells. All-perovskite four-terminal (4T) tandem solar cells have gained great attention because of solution-processability and potentially high efficiency without a need for current-matching between subcells. To make the best use of a tandem architecture, the subcell bandgaps and thicknesses must be optimized. This study presents a drift-diffusion simulation model to find optimum device parameters for a 4T tandem cell exceeding 33% of efficiency. Optimized subcell bandgaps and thicknesses, contact workfunctions, charge transport layer doping and perovskite surface modification are investigated for all-perovskite 4T tandem solar cells. Also, using real material and device parameters, the impact of bulk and interface traps is investigated. It is observed that, despite high recombination losses, the 4T device can achieve very high efficiencies for a broad range of bandgap combinations. We obtained the best efficiency for top and bottom cell bandgaps close to 1.55 eV and 0.9 eV, respectively. The optimum thickness of the top and bottom cells are found to be about 250 nm and 450 nm, respectively. Furthermore, we investigated that doping in the hole transport layers in both the subcells can significantly improve tandem cell efficiency. The present study will provide the experimentalists an optimum device with optimized bandgaps, thicknesses, contact workfunctions, perovskite surface modification and doping in subcells, enabling high-efficiency all-perovskite 4T tandem solar cells.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2021004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

Inorganic–organic hybrid perovskites offer wide optical absorption, long charge carrier diffusion length, and high optical-to-electrical conversion, enabling more than 25% efficiency of single-junction perovskite solar cells. All-perovskite four-terminal (4T) tandem solar cells have gained great attention because of solution-processability and potentially high efficiency without a need for current-matching between subcells. To make the best use of a tandem architecture, the subcell bandgaps and thicknesses must be optimized. This study presents a drift-diffusion simulation model to find optimum device parameters for a 4T tandem cell exceeding 33% of efficiency. Optimized subcell bandgaps and thicknesses, contact workfunctions, charge transport layer doping and perovskite surface modification are investigated for all-perovskite 4T tandem solar cells. Also, using real material and device parameters, the impact of bulk and interface traps is investigated. It is observed that, despite high recombination losses, the 4T device can achieve very high efficiencies for a broad range of bandgap combinations. We obtained the best efficiency for top and bottom cell bandgaps close to 1.55 eV and 0.9 eV, respectively. The optimum thickness of the top and bottom cells are found to be about 250 nm and 450 nm, respectively. Furthermore, we investigated that doping in the hole transport layers in both the subcells can significantly improve tandem cell efficiency. The present study will provide the experimentalists an optimum device with optimized bandgaps, thicknesses, contact workfunctions, perovskite surface modification and doping in subcells, enabling high-efficiency all-perovskite 4T tandem solar cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全钙钛矿四端串联太阳能电池的器件模拟:达到33%的效率
无机-有机混合钙钛矿具有广泛的光学吸收、较长的电荷载流子扩散长度和较高的光电转换能力,使单结钙钛矿太阳能电池的效率超过25%。全钙钛矿四端串联太阳能电池由于其溶液可加工性和潜在的高效率而不需要亚电池之间的电流匹配而受到广泛关注。为了充分利用串联结构,必须优化子单元的带隙和厚度。为了寻找效率超过33%的4T串联电池的最佳器件参数,本文提出了漂移-扩散仿真模型。对全钙钛矿4T串联太阳能电池的亚电池带隙厚度、接触功函数、电荷输运层掺杂和钙钛矿表面改性进行了优化研究。此外,利用实际材料和器件参数,研究了体阱和界面阱的影响。可以观察到,尽管复合损耗很高,但4T器件可以在广泛的带隙组合中实现非常高的效率。我们在顶部和底部电池带隙分别接近1.55 eV和0.9 eV时获得了最佳效率。结果表明,顶板和底板的最佳厚度分别为250 nm和450 nm左右。此外,我们还研究了在两个亚电池的空穴传输层中掺杂可以显著提高串联电池的效率。本研究将为实验人员提供一种具有最佳带隙、厚度、接触功函数、钙钛矿表面修饰和亚电池掺杂的最佳器件,从而实现高效的全钙钛矿4T串联太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Photovoltaics
EPJ Photovoltaics PHYSICS, APPLIED-
CiteScore
2.30
自引率
4.00%
发文量
15
审稿时长
8 weeks
期刊最新文献
Epitaxy and characterization of InP/InGaAs tandem solar cells grown by MOVPE on InP and Si substrates Effect of the cooling rate on encapsulant's crystallinity and optical properties, and photovoltaic modules' lifetime Insights into circular material and waste flows from c-Si PV industry A direct measure of positive feedback loop-gain due to reverse bias damage in thin-film solar cells using lock-in thermography Combining circularity and environmental metrics to assess material flows of PV silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1