S. Kluska, B. Grübel, G. Cimiotti, C. Schmiga, Heinrich Berg, A. Beinert, Irene Kubitza, Paul Müller, T. Voss
{"title":"Plated TOPCon solar cells & modules with reliable fracture stress and soldered module interconnection","authors":"S. Kluska, B. Grübel, G. Cimiotti, C. Schmiga, Heinrich Berg, A. Beinert, Irene Kubitza, Paul Müller, T. Voss","doi":"10.1051/epjpv/2021010","DOIUrl":null,"url":null,"abstract":"This work demonstrates that the application of plated Ni/Cu/Ag contacts for TOPCon solar cells and modules is a reliable alternative to screen-printed metallization. Key advantages of plated metallization is a significant reduction of material costs [B. Grübel et al., in Proceedings 11th SiliconPV Conference, Hamelin, 2021, to be published] due to the substitution of a fully printed silver finger by a stack of a thin nickel seed layer (0.5-1 μm height), highly conductive copper finger (3–10 μm height) and an ultra-thin surface finish by tin (1–3 μm height) or silver (<0.5 μm height). In this study it will be shown that conventional soldering technology can be used to interconnect plated TOPCon solar cells. We manufactured a 60-cell module using industrial processes. The right choice of plating electrolyte allows low stress and ductile metal finger leading to similar reliability in cell breakage experiments compared to state-of-the-art screen-printing metallization.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2021010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
This work demonstrates that the application of plated Ni/Cu/Ag contacts for TOPCon solar cells and modules is a reliable alternative to screen-printed metallization. Key advantages of plated metallization is a significant reduction of material costs [B. Grübel et al., in Proceedings 11th SiliconPV Conference, Hamelin, 2021, to be published] due to the substitution of a fully printed silver finger by a stack of a thin nickel seed layer (0.5-1 μm height), highly conductive copper finger (3–10 μm height) and an ultra-thin surface finish by tin (1–3 μm height) or silver (<0.5 μm height). In this study it will be shown that conventional soldering technology can be used to interconnect plated TOPCon solar cells. We manufactured a 60-cell module using industrial processes. The right choice of plating electrolyte allows low stress and ductile metal finger leading to similar reliability in cell breakage experiments compared to state-of-the-art screen-printing metallization.