Snapshot of Photovoltaics − May 2023

IF 1.9 Q3 PHYSICS, APPLIED EPJ Photovoltaics Pub Date : 2023-01-01 DOI:10.1051/epjpv/2023016
A. Jäger-Waldau
{"title":"Snapshot of Photovoltaics − May 2023","authors":"A. Jäger-Waldau","doi":"10.1051/epjpv/2023016","DOIUrl":null,"url":null,"abstract":"In 2022 the cumulative installed photovoltaic electricity generation capacity increased to over 1 TW, 10 years after it reached the 100 GW level in 2012. In 2022, overall investment in renewable energy has increased by 16% to USD 499 billion compared to USD 953 billion for fossil fuels, which saw an increase of 6%. Investments in solar photovoltaics accounted for USD 301.5 billion or 60% of the renewable energy investments. The annual installations of solar photovoltaic electricity generation systems increased by about 40% to over 230 GWp in 2022. Compared to 2021, the number of countries which installed 1 GWp/year or more has increased by almost 80% to 32. Despite the increase in hardware costs for solar photovoltaic systems and battery storage, both markets had a strong growth, driven by the soaring energy prices in 2022. The increase of the levelised costs for solar photovoltaic electricity was well below the increase of electricity generated with fossil fuels. The electrification of heating, transport and industry will create additional demand for renewable electricity, including solar, if we want to stay on track for not more than 1.5 °C global temperature increase.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"95 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2023016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

In 2022 the cumulative installed photovoltaic electricity generation capacity increased to over 1 TW, 10 years after it reached the 100 GW level in 2012. In 2022, overall investment in renewable energy has increased by 16% to USD 499 billion compared to USD 953 billion for fossil fuels, which saw an increase of 6%. Investments in solar photovoltaics accounted for USD 301.5 billion or 60% of the renewable energy investments. The annual installations of solar photovoltaic electricity generation systems increased by about 40% to over 230 GWp in 2022. Compared to 2021, the number of countries which installed 1 GWp/year or more has increased by almost 80% to 32. Despite the increase in hardware costs for solar photovoltaic systems and battery storage, both markets had a strong growth, driven by the soaring energy prices in 2022. The increase of the levelised costs for solar photovoltaic electricity was well below the increase of electricity generated with fossil fuels. The electrification of heating, transport and industry will create additional demand for renewable electricity, including solar, if we want to stay on track for not more than 1.5 °C global temperature increase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏快照−2023年5月
到2022年,光伏发电累计装机容量将超过1太瓦,距离2012年达到100吉瓦水平已有10年。2022年,可再生能源投资总额增长16%,达到4990亿美元,而化石燃料投资总额为9530亿美元,增长6%。太阳能光伏投资为3015亿美元,占可再生能源投资的60%。到2022年,太阳能光伏发电系统的年安装量将增加约40%,超过230gwp。与2021年相比,每年安装1 GWp或以上的国家数量增加了近80%,达到32个。尽管太阳能光伏系统和电池存储的硬件成本有所增加,但在2022年能源价格飙升的推动下,这两个市场都实现了强劲增长。太阳能光伏发电平准化成本的增长远低于化石燃料发电的增长。如果我们想保持全球气温上升不超过1.5°C的目标,供暖、运输和工业的电气化将创造对包括太阳能在内的可再生电力的额外需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Photovoltaics
EPJ Photovoltaics PHYSICS, APPLIED-
CiteScore
2.30
自引率
4.00%
发文量
15
审稿时长
8 weeks
期刊最新文献
Epitaxy and characterization of InP/InGaAs tandem solar cells grown by MOVPE on InP and Si substrates Effect of the cooling rate on encapsulant's crystallinity and optical properties, and photovoltaic modules' lifetime Insights into circular material and waste flows from c-Si PV industry A direct measure of positive feedback loop-gain due to reverse bias damage in thin-film solar cells using lock-in thermography Combining circularity and environmental metrics to assess material flows of PV silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1