Research on online monitoring and cause identification system of building electrical fire

F. Yang, Zhuoyuan Cai, Lei Su, Y. Xue, Xiao Chen, Yu Shen, Junjie Wang
{"title":"Research on online monitoring and cause identification system of building electrical fire","authors":"F. Yang, Zhuoyuan Cai, Lei Su, Y. Xue, Xiao Chen, Yu Shen, Junjie Wang","doi":"10.1051/ijmqe/2022009","DOIUrl":null,"url":null,"abstract":"Frequent building electrical fire accidents have brought great harm to life and property. In order to prevent the occurrence of accidents and reduce the losses to the greatest extent, it is necessary to take effective measures for building electrical fires. Based on the Internet of things (IoT) technology, a system for online monitoring and cause identification of building electrical fire is proposed in this paper. For both hardware and software, this paper introduces the overall structure, component units and system functions in detail. According to the characteristics of arc fault and fire, the complete scheme of online monitoring is given, and the system workflow is also described to realize the cause identification. Finally, the effectiveness of this system is verified by practical testing. The results show that the proposed system is helpful to solve the problems in monitoring and cause identification of building electrical fire, which can not only provide decision-making basis for firefighting, but also provide strong technical support for improving the safety of low-voltage power grid.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metrology and Quality Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ijmqe/2022009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Frequent building electrical fire accidents have brought great harm to life and property. In order to prevent the occurrence of accidents and reduce the losses to the greatest extent, it is necessary to take effective measures for building electrical fires. Based on the Internet of things (IoT) technology, a system for online monitoring and cause identification of building electrical fire is proposed in this paper. For both hardware and software, this paper introduces the overall structure, component units and system functions in detail. According to the characteristics of arc fault and fire, the complete scheme of online monitoring is given, and the system workflow is also described to realize the cause identification. Finally, the effectiveness of this system is verified by practical testing. The results show that the proposed system is helpful to solve the problems in monitoring and cause identification of building electrical fire, which can not only provide decision-making basis for firefighting, but also provide strong technical support for improving the safety of low-voltage power grid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建筑电气火灾在线监测与原因识别系统研究
频繁发生的建筑电气火灾事故给人们的生命财产带来了巨大的危害。为了最大限度地防止事故的发生,减少损失,有必要对建筑电气火灾采取有效措施。提出了一种基于物联网技术的建筑电气火灾在线监测与原因识别系统。在硬件和软件方面,详细介绍了系统的总体结构、组成单元和系统功能。根据电弧故障和火灾的特点,给出了完整的在线监测方案,并描述了系统工作流程,实现了故障原因的识别。最后,通过实际测试验证了该系统的有效性。结果表明,该系统有助于解决建筑电气火灾的监测和原因识别问题,不仅可以为消防提供决策依据,而且为提高低压电网的安全性提供有力的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Metrology and Quality Engineering
International Journal of Metrology and Quality Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.70
自引率
0.00%
发文量
8
审稿时长
8 weeks
期刊最新文献
Investigation of influence of grinding wheel and cutting parameters on surface roughness and surface hardening when relieving grinding the gear milling teeth surface based on the Archimedes' spiral Analysis and treatment of current unbalance abnormal situation of 750 kV double-circuit parallel transmission line Characterizing a linear pyrometer at the National Metrology Institute of South Africa Estimation of parallelism measurement uncertainty according to the Geometrical Product Specifications standard using coordinate measuring machine First study on harvesting electromagnetic noise energy generated by the frequency converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1