Recent advances in aggregation-induced emission (AIE)-based chemosensors for the detection of organic small molecules

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2023-08-23 DOI:10.1039/D3QM00679D
Ming Hui Chua, Bryan Yat Kit Hui, Kang Le Osmund Chin, Qiang Zhu, Xiaogang Liu and Jianwei Xu
{"title":"Recent advances in aggregation-induced emission (AIE)-based chemosensors for the detection of organic small molecules","authors":"Ming Hui Chua, Bryan Yat Kit Hui, Kang Le Osmund Chin, Qiang Zhu, Xiaogang Liu and Jianwei Xu","doi":"10.1039/D3QM00679D","DOIUrl":null,"url":null,"abstract":"<p >The discovery of the aggregation-induced emission (AIE) phenomenon in many classes of organic molecules has revolutionized our understanding of the photoluminescence properties of materials. These breakthroughs have opened up new possibilities for real-life applications and state-of-the-art technologies. AIE luminogens (AIEgens) have emerged as highly useful tools, effectively overcoming the limitations of conventional aggregation-caused quenching (ACQ) luminogens. They find applications in various fields such as biomedical uses, optoelectronics, stimuli-responsive materials, and chemosensing. In particular, the development of highly sensitive and selective AIE fluorescent probes has significantly complemented conventional instrumental analysis methods, offering low-cost, convenient, and rapid detection of target analytes. With intensive research efforts in this area, a wide range of small molecule analytes, including biologically important molecules, drug molecules, volatile organic compounds, and explosives, can now be detected. This review aims to provide an overview of the progress made in the development of AIE-based organic small molecule probes over the past five years.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 22","pages":" 5561-5660"},"PeriodicalIF":6.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/qm/d3qm00679d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of the aggregation-induced emission (AIE) phenomenon in many classes of organic molecules has revolutionized our understanding of the photoluminescence properties of materials. These breakthroughs have opened up new possibilities for real-life applications and state-of-the-art technologies. AIE luminogens (AIEgens) have emerged as highly useful tools, effectively overcoming the limitations of conventional aggregation-caused quenching (ACQ) luminogens. They find applications in various fields such as biomedical uses, optoelectronics, stimuli-responsive materials, and chemosensing. In particular, the development of highly sensitive and selective AIE fluorescent probes has significantly complemented conventional instrumental analysis methods, offering low-cost, convenient, and rapid detection of target analytes. With intensive research efforts in this area, a wide range of small molecule analytes, including biologically important molecules, drug molecules, volatile organic compounds, and explosives, can now be detected. This review aims to provide an overview of the progress made in the development of AIE-based organic small molecule probes over the past five years.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚集诱导发射(AIE)的有机小分子化学传感器的研究进展
在许多类别的有机分子中,聚集诱导发射(AIE)现象的发现彻底改变了我们对材料光致发光特性的理解。这些突破为现实应用和最先进的技术开辟了新的可能性。AIE发光源(AIEgens)已经成为一种非常有用的工具,有效地克服了传统的聚集引起猝灭(ACQ)发光源的局限性。它们在生物医学、光电子、刺激响应材料和化学传感等各个领域都有应用。特别是高灵敏度和选择性AIE荧光探针的发展,极大地补充了传统的仪器分析方法,提供了低成本、方便和快速的目标分析物检测。随着这一领域的深入研究,现在可以检测到广泛的小分子分析物,包括生物学上重要的分子、药物分子、挥发性有机化合物和爆炸物。本文综述了近五年来基于人工智能的有机小分子探针的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Self-assembled phthalocyanine-based nano-photosensitizers in photodynamic therapy for hypoxic tumors Back cover Retraction: A supramolecular nanotube used as a water-degradable template for the production of protein nanotubes with high thermal/chemical stabilities Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1