Accelerated vascularization of a novel collagen hydrogel dermal template

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-10-11 DOI:10.1002/term.3356
Adam Weisel, Rachael Cohen, Jason A. Spector, Yulia Sapir-Lekhovitser
{"title":"Accelerated vascularization of a novel collagen hydrogel dermal template","authors":"Adam Weisel,&nbsp;Rachael Cohen,&nbsp;Jason A. Spector,&nbsp;Yulia Sapir-Lekhovitser","doi":"10.1002/term.3356","DOIUrl":null,"url":null,"abstract":"<p>Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2–4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. <i>In vitro</i> analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2-stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1173-1183"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3356","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2–4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. In vitro analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2-stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型胶原水凝胶真皮模板的加速血管化
全层皮肤脱落是一个使人衰弱的问题,最常用的重建方法是分厚皮肤移植(STSG),它不能重建正常的皮肤厚度,经常导致不理想的功能和美学结果,降低患者的生活质量。为了解决大多数STSG中存在的最小真皮问题,开发了工程真皮模板,可以诱导组织向内生长和新生真皮组织的形成。然而,临床上可用的真皮模板有许多缺点,包括新生血管的速度和程度相对较慢(~ 2-4周),导致多次换药,长时间固定,易感染。本文提出了一种新型复合水凝胶支架,它优化了独特的支架微结构,具有天然水凝胶特性和机械线索,非常适合促进新生血管、组织再生和伤口愈合。体外分析表明,改进的机械特性与天然水凝胶特性的独特结合促进了支架内细胞的侵袭和重塑。在一种新型的2阶段全层皮肤脱落大鼠模型中,复合水凝胶诱导快速细胞浸润和新生血管形成,仅在1周后就可以形成健康的新生皮,并在其上放置皮肤移植物。支架也引发了一个渐进的和有利的免疫反应,导致更有效地融入宿主。我们已经开发出一种真皮支架,它利用简单但独特的胶原水凝胶结构线索,迅速诱导形成稳定的、功能性的新生真皮组织,这对治疗全层皮肤脱落有着巨大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
期刊最新文献
Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration Polycaprolactone Fiber and Laminin and Collagen IV Protein Incorporation in Implants Enhances Wound Healing in a Novel Mouse Skin Splint Model Herpesvirus-Entry Mediator Inhibits the NF-κB Pathway Activated by IL-17 and Fosters the Osteogenic Differentiation of Allogeneic Mesenchymal Stem Cells Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1