Sara Romanazzo, Chantal Kopecky, Shouyuan Jiang, Riddhesh Doshi, Vipul Mukund, Pallavi Srivastava, Jelena Rnjak-Kovacina, Kilian Kelly, Kristopher A. Kilian
{"title":"Biomaterials directed activation of a cryostable therapeutic secretome in induced pluripotent stem cell derived mesenchymal stromal cells","authors":"Sara Romanazzo, Chantal Kopecky, Shouyuan Jiang, Riddhesh Doshi, Vipul Mukund, Pallavi Srivastava, Jelena Rnjak-Kovacina, Kilian Kelly, Kristopher A. Kilian","doi":"10.1002/term.3347","DOIUrl":null,"url":null,"abstract":"<p>Mesenchymal stem cell therapy has suffered from wide variability in clinical efficacy, largely due to heterogeneous starting cell populations and large-scale cell death during and after implantation. Optimizing the manufacturing process has led to reproducible cell populations that can be cryopreserved for clinical applications. Nevertheless, ensuring a reproducible cell state that persists after cryopreservation remains a significant challenge, and is necessary to ensure reproducible clinical outcomes. Here we demonstrate how matrix-conjugated hydrogel cell culture materials can normalize a population of induced pluripotent stem cell derived mesenchymal stem cells (iPSC-MSCs) to display a defined secretory profile that promotes enhanced neovascularization in vitro and in vivo. Using a protein-conjugated biomaterials screen we identified two conditions—1 kPa collagen and 10 kPa fibronectin coated polyacrylamide gels—that promote reproducible secretion of pro-angiogenic and immunomodulatory cytokines from iPSC-MSCs that enhance tubulogenesis of endothelial cells in Geltrex and neovascularization in chick chorioallantoic membranes. Using defined culture substrates alone, we demonstrate maintenance of secretory activity after cryopreservation for the first time. This advance provides a simple and scalable approach for cell engineering and subsequent manufacturing, toward normalizing and priming a desired cell activity for clinical regenerative medicine.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"1008-1018"},"PeriodicalIF":3.1000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3347","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3347","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Mesenchymal stem cell therapy has suffered from wide variability in clinical efficacy, largely due to heterogeneous starting cell populations and large-scale cell death during and after implantation. Optimizing the manufacturing process has led to reproducible cell populations that can be cryopreserved for clinical applications. Nevertheless, ensuring a reproducible cell state that persists after cryopreservation remains a significant challenge, and is necessary to ensure reproducible clinical outcomes. Here we demonstrate how matrix-conjugated hydrogel cell culture materials can normalize a population of induced pluripotent stem cell derived mesenchymal stem cells (iPSC-MSCs) to display a defined secretory profile that promotes enhanced neovascularization in vitro and in vivo. Using a protein-conjugated biomaterials screen we identified two conditions—1 kPa collagen and 10 kPa fibronectin coated polyacrylamide gels—that promote reproducible secretion of pro-angiogenic and immunomodulatory cytokines from iPSC-MSCs that enhance tubulogenesis of endothelial cells in Geltrex and neovascularization in chick chorioallantoic membranes. Using defined culture substrates alone, we demonstrate maintenance of secretory activity after cryopreservation for the first time. This advance provides a simple and scalable approach for cell engineering and subsequent manufacturing, toward normalizing and priming a desired cell activity for clinical regenerative medicine.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.