{"title":"Effect of Heated Perimeter on Forced Convection Heat Transfer of he i at a Supercritical Pressure","authors":"D. Doi, M. Shiotsu, Y. Shirai, K. Hama","doi":"10.1063/1.2908464","DOIUrl":null,"url":null,"abstract":"The forced convection heat transfer coefficients were measured on two pairs of test plates all 6.0 mm in width and located face to face on inner walls of a rectangular duct. Each pair having length of 20 mm and 80 mm, respectively, was connected in series electrically. The rectangular duct was 420 mm in length and 5 mm×6 mm in inner cross section. The experiments were performed for inlet temperatures from 2.2 to 6.5 K, flow velocities from 0.1 to 5.6 m/s, and at a supercritical pressure of 2.8 atm. Comparison of the obtained Nusselt numbers with the former results with a single test plate showed the clear effect of a heated perimeter. Non-dimensional heat transfer equation including the effect of heated perimeter is presented.","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"1133-1140"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908464","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cryogenic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2908464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The forced convection heat transfer coefficients were measured on two pairs of test plates all 6.0 mm in width and located face to face on inner walls of a rectangular duct. Each pair having length of 20 mm and 80 mm, respectively, was connected in series electrically. The rectangular duct was 420 mm in length and 5 mm×6 mm in inner cross section. The experiments were performed for inlet temperatures from 2.2 to 6.5 K, flow velocities from 0.1 to 5.6 m/s, and at a supercritical pressure of 2.8 atm. Comparison of the obtained Nusselt numbers with the former results with a single test plate showed the clear effect of a heated perimeter. Non-dimensional heat transfer equation including the effect of heated perimeter is presented.