Optimal Pulse-Tube Design Using Computational Fluid Dynamics

R. Taylor, G. Nellis, S. Klein
{"title":"Optimal Pulse-Tube Design Using Computational Fluid Dynamics","authors":"R. Taylor, G. Nellis, S. Klein","doi":"10.1063/1.2908505","DOIUrl":null,"url":null,"abstract":"Over the past few decades, the pulse-tube cryocooler has advanced from a curiosity to one of the most attractive systems for providing reliable cryogenic cooling; it is now used in aerospace, medical and superconductor applications. This technology development has been enabled by the simulation tools that are available for regenerator, compressor, and inertance tube design. However, a dedicated design tool for the pulse-tube component in a pulse-tube cryocooler and the associated flow transitions between the pulse tube and the regenerator and the pulse tube and the inertance network is not currently available.This paper describes the development of a two-dimensional, axisymmetric computational fluid dynamic (CFD) model of the pulse-tube and its associated flow transitions. The model is implemented in the commercial CFD package FLUENT. The CFD simulations are sufficient to calculate and delineate the various loss mechanisms; these are reported as a percentage of the acoustic power that is present at the co...","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2908505","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cryogenic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2908505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Over the past few decades, the pulse-tube cryocooler has advanced from a curiosity to one of the most attractive systems for providing reliable cryogenic cooling; it is now used in aerospace, medical and superconductor applications. This technology development has been enabled by the simulation tools that are available for regenerator, compressor, and inertance tube design. However, a dedicated design tool for the pulse-tube component in a pulse-tube cryocooler and the associated flow transitions between the pulse tube and the regenerator and the pulse tube and the inertance network is not currently available.This paper describes the development of a two-dimensional, axisymmetric computational fluid dynamic (CFD) model of the pulse-tube and its associated flow transitions. The model is implemented in the commercial CFD package FLUENT. The CFD simulations are sufficient to calculate and delineate the various loss mechanisms; these are reported as a percentage of the acoustic power that is present at the co...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用计算流体动力学优化脉管设计
在过去的几十年里,脉冲管制冷机已经从一个好奇的发展到最具吸引力的系统之一,提供可靠的低温冷却;它现在被用于航空航天、医疗和超导体领域。该技术的发展得益于可用于蓄热器、压缩机和惯性管设计的仿真工具。然而,目前还没有专门的设计工具来设计脉冲管制冷机中的脉冲管组件以及脉冲管与再生器之间以及脉冲管与惯性网络之间的相关流动转换。本文介绍了二维轴对称脉冲管计算流体动力学(CFD)模型的建立及其相关的流动过渡。该模型在商业CFD软件包FLUENT中实现。CFD模拟足以计算和描述各种损失机制;这些被报告为存在于现场的声功率的百分比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Aspect-Ratio Effect of He II Channels on the Heat Transport Characteristics Effect of Flow-Pressure Phase on Performance of Regenerators in the Range of 4 K to 20 K Cryocoolers for aircraft superconducting generators and motors Steady-State heat transfer through micro-channels in pressurized He II Forced convection heat transfer of subcooled liquid hydrogen in horizontal tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1