Effect of Cell Membrane-cloaked Nanoparticle Elasticity on Nano-Bio Interaction

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2023-03-13 DOI:10.1002/smtd.202201548
Pengfei Yuan, Xinjie Chen, Xiaodi Li, Xiaoqing Zong, Caiqi Yang, Yuchao Li, Wei Xue, Jian Dai
{"title":"Effect of Cell Membrane-cloaked Nanoparticle Elasticity on Nano-Bio Interaction","authors":"Pengfei Yuan,&nbsp;Xinjie Chen,&nbsp;Xiaodi Li,&nbsp;Xiaoqing Zong,&nbsp;Caiqi Yang,&nbsp;Yuchao Li,&nbsp;Wei Xue,&nbsp;Jian Dai","doi":"10.1002/smtd.202201548","DOIUrl":null,"url":null,"abstract":"<p>Cell membrane-cloaked nanoparticles are exploited as a promising drug carrier to enhance circulation, accumulation, penetration into tumor sites and cellular internalization. However, the effect of physicochemical properties (e.g., size, surface charge, shape, and elasticity) of cell membrane-cloaked nanoparticles on nano-bio interaction is rarely studied. In the present study, keeping the other parameters constant, erythrocyte membrane (EM)-cloaked nanoparticles (nanoEMs) with different Young's moduli are fabricated by altering different kinds of nano-core (i.e., aqueous phase core, gelatin nanoparticles, and platinum nanoparticles). The designed nanoEMs are used to investigate the effect of nanoparticle elasticity on nano-bio interaction including cellular internalization, tumor penetration, biodistribution, blood circulation, and so on. The results demonstrate that the nanoEMs with intermediate elasticity (≈95 MPa) have a relatively higher increase in cellular internalization and inhibition of tumor cells migration than the soft (≈11 MPa) and stiff (≈173 MPa) ones. Furthermore, in vivo studies show that nanoEMs with intermediate elasticity preferentially accumulate and penetrate into tumor sites than the soft and stiff ones, while in circulation, softer nanoEMs show a longer blood circulation time. This work provides an insight for optimizing the design of biomimetic carriers and may further contribute to the selection of nanomaterials on biomedical application.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202201548","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Cell membrane-cloaked nanoparticles are exploited as a promising drug carrier to enhance circulation, accumulation, penetration into tumor sites and cellular internalization. However, the effect of physicochemical properties (e.g., size, surface charge, shape, and elasticity) of cell membrane-cloaked nanoparticles on nano-bio interaction is rarely studied. In the present study, keeping the other parameters constant, erythrocyte membrane (EM)-cloaked nanoparticles (nanoEMs) with different Young's moduli are fabricated by altering different kinds of nano-core (i.e., aqueous phase core, gelatin nanoparticles, and platinum nanoparticles). The designed nanoEMs are used to investigate the effect of nanoparticle elasticity on nano-bio interaction including cellular internalization, tumor penetration, biodistribution, blood circulation, and so on. The results demonstrate that the nanoEMs with intermediate elasticity (≈95 MPa) have a relatively higher increase in cellular internalization and inhibition of tumor cells migration than the soft (≈11 MPa) and stiff (≈173 MPa) ones. Furthermore, in vivo studies show that nanoEMs with intermediate elasticity preferentially accumulate and penetrate into tumor sites than the soft and stiff ones, while in circulation, softer nanoEMs show a longer blood circulation time. This work provides an insight for optimizing the design of biomimetic carriers and may further contribute to the selection of nanomaterials on biomedical application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞膜覆盖的纳米颗粒弹性对纳米生物相互作用的影响
被细胞膜包裹的纳米颗粒被认为是一种很有前途的药物载体,可以促进循环、积累、渗透到肿瘤部位和细胞内化。然而,细胞膜覆盖的纳米颗粒的物理化学性质(如大小、表面电荷、形状和弹性)对纳米生物相互作用的影响很少被研究。本研究在其他参数不变的情况下,通过改变不同种类的纳米核(即水相核、明胶纳米粒子和铂纳米粒子),制备了具有不同杨氏模量的红细胞膜(EM)涂层纳米粒子(nanoEMs)。所设计的纳米纳米结构用于研究纳米颗粒弹性对纳米生物相互作用的影响,包括细胞内化、肿瘤穿透、生物分布、血液循环等。结果表明,中等弹性纳米纳米(≈95 MPa)比软弹性纳米(≈11 MPa)和硬弹性纳米(≈173 MPa)具有更高的细胞内化和抑制肿瘤细胞迁移的能力。此外,体内研究表明,具有中等弹性的纳米ems比柔软和坚硬的纳米ems更容易积聚和渗透到肿瘤部位,而在循环中,柔软的纳米ems表现出更长的血液循环时间。本研究为仿生载体的优化设计提供了新的思路,并为纳米材料在生物医学上的应用提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Accelerated Exosomal Metabolic Profiling Enabled by Robust On‐Target Array Sintering with Metal–Organic Frameworks Design and Optimization of Iron‐Based Superionic‐Like Conductor Anode for High‐Performance Lithium/Sodium‐Ion Batteries Novel FRET‐based Immunological Synapse Biosensor for the Prediction of Chimeric Antigen Receptor‐T Cell Function Nanodiamond‐Assisted High‐Performance Sodium‐Ion Batteries with Weakly Solvated Ether Electrolyte at −40 °C Low Temperature Plasma‐Assisted Double Anodic Dissolution: A New Approach for the Synthesis of GdFeO3 Perovskite Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1