Free vibration analysis of higher-order shear elasticity nanocomposite beams with consideration of nonlocal elasticity and poisson effect

I. Mechab, N. E. Meiche, F. Bernard
{"title":"Free vibration analysis of higher-order shear elasticity nanocomposite beams with consideration of nonlocal elasticity and poisson effect","authors":"I. Mechab, N. E. Meiche, F. Bernard","doi":"10.1061/(ASCE)NM.2153-5477.0000110","DOIUrl":null,"url":null,"abstract":"AbstractFree vibration analysis of orthotropic beams with local and nonlocal formulation using the high-order theory including the Poisson effect is presented in this paper. The theory takes into account the transverse shear effects introducing a new displacement shape function and a parabolic distribution of the transverse shear strains through the thickness of the beam. Hence it is unnecessary to use shear correction factors. The governing equations are derived from the principle of virtual displacements. The couplings among the axial, torsion, and bending deformations are investigated in the one-dimensional beam model. The free vibration solutions are finally presented for the nonlocal higher-order beam/column models. The influence of the various geometrical and material parameters, thickness ratio, and number of symmetric and antisymmetric layers of the laminate material has been investigated to find the natural frequencies. The numerical results obtained in the present study for several examples are ...","PeriodicalId":90606,"journal":{"name":"Journal of nanomechanics & micromechanics","volume":"6 1","pages":"04016006"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1061/(ASCE)NM.2153-5477.0000110","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanomechanics & micromechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(ASCE)NM.2153-5477.0000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

AbstractFree vibration analysis of orthotropic beams with local and nonlocal formulation using the high-order theory including the Poisson effect is presented in this paper. The theory takes into account the transverse shear effects introducing a new displacement shape function and a parabolic distribution of the transverse shear strains through the thickness of the beam. Hence it is unnecessary to use shear correction factors. The governing equations are derived from the principle of virtual displacements. The couplings among the axial, torsion, and bending deformations are investigated in the one-dimensional beam model. The free vibration solutions are finally presented for the nonlocal higher-order beam/column models. The influence of the various geometrical and material parameters, thickness ratio, and number of symmetric and antisymmetric layers of the laminate material has been investigated to find the natural frequencies. The numerical results obtained in the present study for several examples are ...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑非局部弹性和泊松效应的高阶剪切弹性纳米复合梁的自由振动分析
摘要本文利用含泊松效应的高阶理论对具有局域和非局域形式的正交各向异性梁进行了自由振动分析。该理论考虑了横向剪切效应,引入了新的位移形状函数和横向剪切应变随梁厚的抛物线分布。因此不需要使用剪切修正系数。控制方程由虚位移原理推导而来。在一维梁模型中,研究了轴向、扭转和弯曲变形之间的耦合。最后给出了非局部高阶梁柱模型的自由振动解。研究了不同几何参数和材料参数、厚度比、对称层数和非对称层数对复合材料固有频率的影响。本文对几个算例所得到的数值结果是……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Water-Aggregate Interactions Affect Concrete Creep: Multiscale Analysis Characterizing Strength and Failure of Calcium Silicate Hydrate Aggregates in Cement Paste under Micropillar Compression Geometrically Nonlinear Static Analysis of an Embedded Multiwalled Carbon Nanotube and the van der Waals Interaction Multiscale Models of Degradation and Healing of Bone Tissue Engineering Nanocomposite Scaffolds Temperature and Moisture Impacts on Asphalt before and after Oxidative Aging Using Molecular Dynamics Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1