Forced convection heat transfer of subcooled liquid hydrogen in horizontal tubes

H. Tatsumoto, Y. Shirai, M. Shiotsu, K. Hata, Y. Naruo, H. Kobayashi, Y. Inatani, Kensuke Kinoshita
{"title":"Forced convection heat transfer of subcooled liquid hydrogen in horizontal tubes","authors":"H. Tatsumoto, Y. Shirai, M. Shiotsu, K. Hata, Y. Naruo, H. Kobayashi, Y. Inatani, Kensuke Kinoshita","doi":"10.1063/1.4706987","DOIUrl":null,"url":null,"abstract":"Forced flow heat transfers of liquid hydrogen through horizontally-mounted tubes with the diameter of 3.0 mm and 6.0 mm were measured at the pressure of 0.7 MPa for various inlet temperatures and flow velocities. The measured non-boiling heat transfer coefficients agree with those by the Dittus-Boelter correlation. The heat fluxes at the onset of nucleate boiling and the departure from nucleate boiling (DNB) heat fluxes, where the heat transfer continuously changes to film boiling regime, are higher for higher flow velocity, larger subcooling and larger tube diameter. The DNB heat fluxes for the horizontally-mounted tube are slightly lower than those for the vertically-mounted tube, although the effect of the tube attitude direction disappears for a small tube diameter. The measured DNB heat fluxes agree with the correlation for vertically-mounted tubes.","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.4706987","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cryogenic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4706987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Forced flow heat transfers of liquid hydrogen through horizontally-mounted tubes with the diameter of 3.0 mm and 6.0 mm were measured at the pressure of 0.7 MPa for various inlet temperatures and flow velocities. The measured non-boiling heat transfer coefficients agree with those by the Dittus-Boelter correlation. The heat fluxes at the onset of nucleate boiling and the departure from nucleate boiling (DNB) heat fluxes, where the heat transfer continuously changes to film boiling regime, are higher for higher flow velocity, larger subcooling and larger tube diameter. The DNB heat fluxes for the horizontally-mounted tube are slightly lower than those for the vertically-mounted tube, although the effect of the tube attitude direction disappears for a small tube diameter. The measured DNB heat fluxes agree with the correlation for vertically-mounted tubes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过冷液氢在水平管内的强制对流换热
在0.7 MPa压力下,测量了不同入口温度和流速下液氢在直径为3.0 mm和6.0 mm的水平安装管中的强迫流动换热。实测的非沸腾换热系数与Dittus-Boelter相关值一致。随着流速的增大、过冷度的增大和管径的增大,成核沸腾起始和离开成核沸腾(DNB)阶段的热流密度均增大。水平安装管的DNB热流比垂直安装管略低,但当管径较小时,管姿方向的影响消失。测得的DNB热流与垂直安装管的相关关系基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Aspect-Ratio Effect of He II Channels on the Heat Transport Characteristics Effect of Flow-Pressure Phase on Performance of Regenerators in the Range of 4 K to 20 K Cryocoolers for aircraft superconducting generators and motors Steady-State heat transfer through micro-channels in pressurized He II Forced convection heat transfer of subcooled liquid hydrogen in horizontal tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1