H. Tatsumoto, Y. Shirai, M. Shiotsu, K. Hata, Y. Naruo, H. Kobayashi, Y. Inatani, Kensuke Kinoshita
{"title":"Forced convection heat transfer of subcooled liquid hydrogen in horizontal tubes","authors":"H. Tatsumoto, Y. Shirai, M. Shiotsu, K. Hata, Y. Naruo, H. Kobayashi, Y. Inatani, Kensuke Kinoshita","doi":"10.1063/1.4706987","DOIUrl":null,"url":null,"abstract":"Forced flow heat transfers of liquid hydrogen through horizontally-mounted tubes with the diameter of 3.0 mm and 6.0 mm were measured at the pressure of 0.7 MPa for various inlet temperatures and flow velocities. The measured non-boiling heat transfer coefficients agree with those by the Dittus-Boelter correlation. The heat fluxes at the onset of nucleate boiling and the departure from nucleate boiling (DNB) heat fluxes, where the heat transfer continuously changes to film boiling regime, are higher for higher flow velocity, larger subcooling and larger tube diameter. The DNB heat fluxes for the horizontally-mounted tube are slightly lower than those for the vertically-mounted tube, although the effect of the tube attitude direction disappears for a small tube diameter. The measured DNB heat fluxes agree with the correlation for vertically-mounted tubes.","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":"985 1","pages":"747-754"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.4706987","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cryogenic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4706987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Forced flow heat transfers of liquid hydrogen through horizontally-mounted tubes with the diameter of 3.0 mm and 6.0 mm were measured at the pressure of 0.7 MPa for various inlet temperatures and flow velocities. The measured non-boiling heat transfer coefficients agree with those by the Dittus-Boelter correlation. The heat fluxes at the onset of nucleate boiling and the departure from nucleate boiling (DNB) heat fluxes, where the heat transfer continuously changes to film boiling regime, are higher for higher flow velocity, larger subcooling and larger tube diameter. The DNB heat fluxes for the horizontally-mounted tube are slightly lower than those for the vertically-mounted tube, although the effect of the tube attitude direction disappears for a small tube diameter. The measured DNB heat fluxes agree with the correlation for vertically-mounted tubes.