Social Sensing: A New Approach to Understanding Our Socioeconomic Environments

Yu Liu, Xi Liu, Song Gao, Li Gong, Chaogui Kang, Ye Zhi, Guanghua Chi, Lili Shi
{"title":"Social Sensing: A New Approach to Understanding Our Socioeconomic Environments","authors":"Yu Liu, Xi Liu, Song Gao, Li Gong, Chaogui Kang, Ye Zhi, Guanghua Chi, Lili Shi","doi":"10.1080/00045608.2015.1018773","DOIUrl":null,"url":null,"abstract":"The emergence of big data brings new opportunities for us to understand our socioeconomic environments. We use the term social sensing for such individual-level big geospatial data and the associated analysis methods. The word sensing suggests two natures of the data. First, they can be viewed as the analogue and complement of remote sensing, as big data can capture well socioeconomic features while conventional remote sensing data do not have such privilege. Second, in social sensing data, each individual plays the role of a sensor. This article conceptually bridges social sensing with remote sensing and points out the major issues when applying social sensing data and associated analytics. We also suggest that social sensing data contain rich information about spatial interactions and place semantics, which go beyond the scope of traditional remote sensing data. In the coming big data era, GIScientists should investigate theories in using social sensing data, such as data representativeness and quality, and develop new tools to deal with social sensing data.","PeriodicalId":80485,"journal":{"name":"Annals of the Association of American Geographers. Association of American Geographers","volume":"105 1","pages":"512 - 530"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00045608.2015.1018773","citationCount":"597","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Association of American Geographers. Association of American Geographers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00045608.2015.1018773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 597

Abstract

The emergence of big data brings new opportunities for us to understand our socioeconomic environments. We use the term social sensing for such individual-level big geospatial data and the associated analysis methods. The word sensing suggests two natures of the data. First, they can be viewed as the analogue and complement of remote sensing, as big data can capture well socioeconomic features while conventional remote sensing data do not have such privilege. Second, in social sensing data, each individual plays the role of a sensor. This article conceptually bridges social sensing with remote sensing and points out the major issues when applying social sensing data and associated analytics. We also suggest that social sensing data contain rich information about spatial interactions and place semantics, which go beyond the scope of traditional remote sensing data. In the coming big data era, GIScientists should investigate theories in using social sensing data, such as data representativeness and quality, and develop new tools to deal with social sensing data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会感知:理解社会经济环境的新途径
大数据的出现为我们理解社会经济环境带来了新的机会。我们将这种个体层面的大地理空间数据和相关的分析方法称为社会感知。“感知”一词暗示了数据的两种性质。首先,它们可以被视为遥感的模拟和补充,因为大数据可以很好地捕捉社会经济特征,而传统遥感数据没有这种特权。其次,在社会感知数据中,每个个体都扮演着传感器的角色。本文从概念上将社会传感与遥感联系起来,并指出应用社会传感数据和相关分析时的主要问题。社会遥感数据包含了丰富的空间交互和地点语义信息,这些信息超出了传统遥感数据的范围。在即将到来的大数据时代,gis科学家应该研究社会感知数据的使用理论,如数据代表性和质量,并开发新的工具来处理社会感知数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Genetic Etiology in Patients with Intellectual Disability: An Experience in Public Health Services in Northeastern Brazil. Antibiotic Use among Patients Visiting Primary Hospitals in Northwest Ethiopia: A Multicenter Cross-Sectional Survey. Differential Privacy and the Accuracy of County-Level Net Migration Estimates. Two French geographers, father and son: Gaston Gravier (1886–1915) and Jean-François Gravier (1915–2005) Maurice Le Lannou (1906–92)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1