Space–Time Analysis: Concepts, Quantitative Methods, and Future Directions

Li An, Ming-Hsiang Tsou, Stephen E. S. Crook, Y. Chun, Brian H. Spitzberg, J. Gawron, D. Gupta
{"title":"Space–Time Analysis: Concepts, Quantitative Methods, and Future Directions","authors":"Li An, Ming-Hsiang Tsou, Stephen E. S. Crook, Y. Chun, Brian H. Spitzberg, J. Gawron, D. Gupta","doi":"10.1080/00045608.2015.1064510","DOIUrl":null,"url":null,"abstract":"Throughout most of human history, events and phenomena of interest have been characterized using space and time as their major characteristic dimensions, in either absolute or relative conceptualizations. Space–time analysis seeks to understand when and where (and sometimes why) things occur. In the context of several of the most recent and substantial advances in individual movement data analysis (time geography in particular) and spatial panel data analysis, we focus on quantitative space–time analytics. Based on more than 700 articles (from 1949 to 2013) we obtained through a key word search on the Web of Knowledge and through the authors' personal archives, this article provides a synthetic overview about the quantitative methodology for space–time analysis. Particularly, we highlight space–time pattern revelation (e.g., various clustering metrics, path comparison indexes, space–time tests), space–time statistical models (e.g., survival analysis, latent trajectory models), and simulation methods (e.g., cellular automaton, agent-based models) as well as their empirical applications in multiple disciplines. This article systematically presents the strengths and weaknesses of a set of prevalent methods used for space–time analysis and points to the major challenges, new opportunities, and future directions of space–time analysis.","PeriodicalId":80485,"journal":{"name":"Annals of the Association of American Geographers. Association of American Geographers","volume":"105 1","pages":"891 - 914"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00045608.2015.1064510","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Association of American Geographers. Association of American Geographers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00045608.2015.1064510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

Throughout most of human history, events and phenomena of interest have been characterized using space and time as their major characteristic dimensions, in either absolute or relative conceptualizations. Space–time analysis seeks to understand when and where (and sometimes why) things occur. In the context of several of the most recent and substantial advances in individual movement data analysis (time geography in particular) and spatial panel data analysis, we focus on quantitative space–time analytics. Based on more than 700 articles (from 1949 to 2013) we obtained through a key word search on the Web of Knowledge and through the authors' personal archives, this article provides a synthetic overview about the quantitative methodology for space–time analysis. Particularly, we highlight space–time pattern revelation (e.g., various clustering metrics, path comparison indexes, space–time tests), space–time statistical models (e.g., survival analysis, latent trajectory models), and simulation methods (e.g., cellular automaton, agent-based models) as well as their empirical applications in multiple disciplines. This article systematically presents the strengths and weaknesses of a set of prevalent methods used for space–time analysis and points to the major challenges, new opportunities, and future directions of space–time analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空分析:概念、定量方法和未来方向
在人类历史的大部分时间里,我们感兴趣的事件和现象都是用空间和时间作为它们的主要特征维度来描述的,无论是绝对的还是相对的概念。时空分析试图理解事情发生的时间和地点(有时是原因)。在个人运动数据分析(特别是时间地理)和空间面板数据分析的几个最新和实质性进展的背景下,我们专注于定量时空分析。本文以知识网络(Web of Knowledge)关键词检索所获得的700余篇文献(1949 - 2013年)和作者个人档案为基础,对时空定量分析方法进行了综合综述。特别是,我们强调时空模式揭示(例如,各种聚类指标,路径比较指标,时空测试),时空统计模型(例如,生存分析,潜在轨迹模型)和仿真方法(例如,元胞自动机,基于代理的模型)及其在多学科中的经验应用。本文系统地介绍了一套常用的时空分析方法的优缺点,并指出了时空分析的主要挑战、新的机遇和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Genetic Etiology in Patients with Intellectual Disability: An Experience in Public Health Services in Northeastern Brazil. Antibiotic Use among Patients Visiting Primary Hospitals in Northwest Ethiopia: A Multicenter Cross-Sectional Survey. Differential Privacy and the Accuracy of County-Level Net Migration Estimates. Two French geographers, father and son: Gaston Gravier (1886–1915) and Jean-François Gravier (1915–2005) Maurice Le Lannou (1906–92)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1