A Targeting Singlet Oxygen Battery for Multidrug-Resistant Bacterial Deep-Tissue Infections

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2023-07-17 DOI:10.1002/anie.202306803
Yiwen Zhu, Minzheng Gao, Mengrui Su, Yanzhe Shen, Kai Zhang, Bingran Yu, Fu-Jian Xu
{"title":"A Targeting Singlet Oxygen Battery for Multidrug-Resistant Bacterial Deep-Tissue Infections","authors":"Yiwen Zhu,&nbsp;Minzheng Gao,&nbsp;Mengrui Su,&nbsp;Yanzhe Shen,&nbsp;Kai Zhang,&nbsp;Bingran Yu,&nbsp;Fu-Jian Xu","doi":"10.1002/anie.202306803","DOIUrl":null,"url":null,"abstract":"<p>Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the “singlet oxygen battery” CARG-<sup>1</sup>O<sub>2</sub> and released singlet oxygen without external irradiation or oxygen. CARG-<sup>1</sup>O<sub>2</sub> is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-<sup>1</sup>O<sub>2</sub> was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA). An <i>in vivo</i> study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-<sup>1</sup>O<sub>2</sub> for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202306803","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the “singlet oxygen battery” CARG-1O2 and released singlet oxygen without external irradiation or oxygen. CARG-1O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
靶向单线态氧电池治疗多重耐药细菌深层组织感染
传统的光动力疗法(PDT)依赖于外部施加的光和氧气,这些因素的渗透深度可能不足以治疗深部感染。活性氧(ROS)的半衰期短、扩散距离短也限制了PDT的抗菌效果。在此,我们设计了一种靶向单线态氧输送系统CARG-Py,用于无辐照和无氧PDT。该系统被转化为“单线态氧电池”CARG-1O2,在没有外部照射或氧气的情况下释放单线态氧。CARG-1O2由吡啶酮偶联到靶向肽组成,可提高深度多重耐药细菌感染中单线态氧的利用率。CARG-1O2通过增加细菌内活性氧的水平来破坏DNA、蛋白质和细胞膜;多重生物分子位点的攻击导致耐甲氧西林金黄色葡萄球菌(MRSA)死亡。在mrsa感染的肺炎小鼠模型中进行的体内研究表明,CARG-1O2具有有效治疗深部感染的潜力。本研究在提高PDT治疗便利性的同时,为改进传统PDT治疗深部感染的无氧和辐射治疗提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Reversible Hydrogen Acceptor–Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis A Grafting Hydrogen-bonded Organic Framework for Benchmark Selectivity of C2H2/CO2 Separation under Ambient Conditions A Proteomics Pipeline for Generating Clinical Grade Biomarker Candidates from Data-Independent Acquisition Mass Spectrometry (DIA-MS) Discovery [5]Helicene Based π-Conjugated Macrocycles with Persistent Figure-Eight and Möbius Shapes: Efficient Synthesis, Chiral Resolution and Bright Circularly Polarized Luminescence Formamidinium Incorporates into Rb-based Non-perovskite Phases in Solar Cell Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1