Oxidized Hastelloy Cloth Insulation for a Wind‐and‐React Processed Ag/Bi2Sr2CaCu2O8 Superconducting Magnet

K. Watanabe, G. Nishijima, S. Awaji, Y. Hikichi, T. Hasegawa
{"title":"Oxidized Hastelloy Cloth Insulation for a Wind‐and‐React Processed Ag/Bi2Sr2CaCu2O8 Superconducting Magnet","authors":"K. Watanabe, G. Nishijima, S. Awaji, Y. Hikichi, T. Hasegawa","doi":"10.1063/1.2192413","DOIUrl":null,"url":null,"abstract":"Practical multifilamentary Ag/Bi2Sr2CaCu2O8 round wires 1 mm in diameter exhibit critical current properties without anisotropy in fields up to 30 T and 4.2 K. We concentrate on the development of a Ag/Bi2Sr2CaCu2O8 insert coil by a wind‐and‐react method for a high field NMR superconducting magnet. Hastelloy cloth was used for the insulation for the wind‐and‐react process. A φ0.05 mm Hastelloy X (Hx) filament was knitted into a braid tube, and has a high mechanical strength and a good tolerance to oxidization at high temperature. We fabricated multifilamentary Ag/Bi2Sr2CaCu2O8 wires with Hx cloth, and heat‐treated them at around 890 °C in an oxygen atmosphere. It was found that the surface of Hx cloth is oxidized enough for a good electric insulation. Multifilamentary Ag/Bi2Sr2CaCu2O8 wires with oxidized Hx cloth insulation have the critical current of 720 A at 4.2 K in a self field.","PeriodicalId":80359,"journal":{"name":"Advances in cryogenic engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.2192413","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cryogenic engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2192413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Practical multifilamentary Ag/Bi2Sr2CaCu2O8 round wires 1 mm in diameter exhibit critical current properties without anisotropy in fields up to 30 T and 4.2 K. We concentrate on the development of a Ag/Bi2Sr2CaCu2O8 insert coil by a wind‐and‐react method for a high field NMR superconducting magnet. Hastelloy cloth was used for the insulation for the wind‐and‐react process. A φ0.05 mm Hastelloy X (Hx) filament was knitted into a braid tube, and has a high mechanical strength and a good tolerance to oxidization at high temperature. We fabricated multifilamentary Ag/Bi2Sr2CaCu2O8 wires with Hx cloth, and heat‐treated them at around 890 °C in an oxygen atmosphere. It was found that the surface of Hx cloth is oxidized enough for a good electric insulation. Multifilamentary Ag/Bi2Sr2CaCu2O8 wires with oxidized Hx cloth insulation have the critical current of 720 A at 4.2 K in a self field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化哈氏合金布绝缘的风和反应处理Ag/Bi2Sr2CaCu2O8超导磁体
实用的直径为1mm的多丝Ag/Bi2Sr2CaCu2O8圆线在高达30t和4.2 K的电场中表现出临界电流特性,无各向异性。我们专注于通过风-反应方法开发用于高场核磁共振超导磁体的Ag/Bi2Sr2CaCu2O8插入线圈。哈氏合金布用于风-反应过程的绝缘。将φ0.05 mm哈氏合金X (Hx)长丝编织成编织管,其机械强度高,高温耐氧化性好。我们用Hx布制备了多丝Ag/Bi2Sr2CaCu2O8丝,并在890℃左右的氧气环境中进行了热处理。结果发现,Hx布的表面氧化程度足以达到良好的电绝缘性。采用氧化Hx布绝缘的多丝Ag/Bi2Sr2CaCu2O8导线在自场4.2 K时的临界电流为720 A。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Aspect-Ratio Effect of He II Channels on the Heat Transport Characteristics Effect of Flow-Pressure Phase on Performance of Regenerators in the Range of 4 K to 20 K Cryocoolers for aircraft superconducting generators and motors Steady-State heat transfer through micro-channels in pressurized He II Forced convection heat transfer of subcooled liquid hydrogen in horizontal tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1