{"title":"Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north-west Turkey)","authors":"Y. L. Ekinci, E. Yi̇ği̇tbaş","doi":"10.1080/09853111.2015.1046354","DOIUrl":null,"url":null,"abstract":"On the basis of gravity data, derived anomaly traces were presented for the interpretation of some shallow structural features of Biga and Gelibolu peninsulas. Since building general understanding of subtle details about subsurface geology is of great importance considering that the study area is tectonically important, some advanced data processing techniques were implemented to gravity anomalies in a detailed manner. The procedures were performed using a MATLAB-based software package (Gravity and Magnetic Interpretation – GMINTERP). First, a finite element method was utilised to produce the residual data-set which is expected to reflect short wavelength anomalies arising from shallower geological structures, and thereafter some derivative-based algorithms were executed to analyse the residual data. The general anomaly patterns obtained from the applications clearly corresponded to the well-known surface geology map of the study area. Derivative-based anomaly maps put forward some findings about the existence of an old caldera structure in the western part of the Biga Peninsula. Additionally, abrupt lateral changes in anomaly amplitudes indicated the presence of some major structural discontinuities. Thus, findings yielded to make significant geological interpretations that might be important for further investigations. This study also showed that GMINTERP software package proved useful in assisting geological interpretation using geophysical potential field data-sets.","PeriodicalId":50420,"journal":{"name":"Geodinamica Acta","volume":"27 1","pages":"300 - 319"},"PeriodicalIF":1.5000,"publicationDate":"2015-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09853111.2015.1046354","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodinamica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09853111.2015.1046354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 50
Abstract
On the basis of gravity data, derived anomaly traces were presented for the interpretation of some shallow structural features of Biga and Gelibolu peninsulas. Since building general understanding of subtle details about subsurface geology is of great importance considering that the study area is tectonically important, some advanced data processing techniques were implemented to gravity anomalies in a detailed manner. The procedures were performed using a MATLAB-based software package (Gravity and Magnetic Interpretation – GMINTERP). First, a finite element method was utilised to produce the residual data-set which is expected to reflect short wavelength anomalies arising from shallower geological structures, and thereafter some derivative-based algorithms were executed to analyse the residual data. The general anomaly patterns obtained from the applications clearly corresponded to the well-known surface geology map of the study area. Derivative-based anomaly maps put forward some findings about the existence of an old caldera structure in the western part of the Biga Peninsula. Additionally, abrupt lateral changes in anomaly amplitudes indicated the presence of some major structural discontinuities. Thus, findings yielded to make significant geological interpretations that might be important for further investigations. This study also showed that GMINTERP software package proved useful in assisting geological interpretation using geophysical potential field data-sets.
期刊介绍:
Geodinamica Acta provides an international and interdisciplinary forum for the publication of results of recent research dealing with both internal and external geodynamics. Its aims to promote discussion between the various disciplines that work on the dynamics of the lithosphere and hydrosphere. There are no constraints over themes, provided the main thrust of the paper relates to Earth''s internal and external geodynamics. The Journal encourages the submission of papers in all fields of earth sciences, such as biostratigraphy, geochemistry, geochronology and thermochronology, geohazards and their societal impacts, geomorphology, geophysics, glaciology, igneous and metamorphic petrology, magmatism, marine geology, metamorphism, mineral-deposits and energy resources, mineralogy, orogeny, palaeoclimatology, palaeoecology, paleoceanograpgy, palaeontology, petroleum geology, sedimentology, seismology and earthquakes, stratigraphy, structural geology, surface processes, tectonics (neoteoctonic, plate tectonics, seismo-tectonics, Active tectonics) and volcanism.
Geodinamica Acta publishes high quality, peer-reviewed original and timely scientific papers, comprehensive review articles on hot topics of current interest, rapid communications relating to a significant advance in the earth sciences with broad interest, and discussions of papers that have already appeared in recent issues of the journal. Book reviews are also included. Submitted papers must have international appeal and regional implications; they should present work that would be of interest to many different specialists. Geographic coverage is global and work on any part of the world is considered. The Journal also publishes thematic sets of papers on topical aspects of earth sciences or special issues of selected papers from conferences.