{"title":"The influence of sediment thickness on energy delivery to the bed by bedload impacts","authors":"J. Turowski, J. Bloem","doi":"10.1080/09853111.2015.1047195","DOIUrl":null,"url":null,"abstract":"Fluvial bedrock erosion rates due to impacting sediment particles are thought to be proportional to the energy delivered to the bedrock. When sediment particles cover the bed, they reduce the energy transmitted to the bed by an impacting particle. We measured the decline of energy transferred through sediment cover of increasing thickness in laboratory experiments. The energy arriving at the bed is a function both of the cover thickness and the grain size of the covering sediment. Using a simple stochastic model of cover distribution, the experimental results were upscaled to the reach scale. Although cover thickness influences energy delivery heavily at a given point, when averaging over the whole bed, cover-free areas dominate total energy delivery, making partial energy transfer through the cover negligible when a small or intermediate fraction of the bed is covered by sediment. Partial energy delivery through the bed cover is not negligible when a large fraction or the complete bed is already covered, but in this situation, an erosion threshold may become important. On grounds of the presented data, we expect that the areal distribution of sediment in a bedrock channel dominates total energy delivery and that partial energy delivery to the bed through a sediment layer can be neglected for most modelling purposes.","PeriodicalId":50420,"journal":{"name":"Geodinamica Acta","volume":"28 1","pages":"199 - 208"},"PeriodicalIF":1.5000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09853111.2015.1047195","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodinamica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09853111.2015.1047195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 13
Abstract
Fluvial bedrock erosion rates due to impacting sediment particles are thought to be proportional to the energy delivered to the bedrock. When sediment particles cover the bed, they reduce the energy transmitted to the bed by an impacting particle. We measured the decline of energy transferred through sediment cover of increasing thickness in laboratory experiments. The energy arriving at the bed is a function both of the cover thickness and the grain size of the covering sediment. Using a simple stochastic model of cover distribution, the experimental results were upscaled to the reach scale. Although cover thickness influences energy delivery heavily at a given point, when averaging over the whole bed, cover-free areas dominate total energy delivery, making partial energy transfer through the cover negligible when a small or intermediate fraction of the bed is covered by sediment. Partial energy delivery through the bed cover is not negligible when a large fraction or the complete bed is already covered, but in this situation, an erosion threshold may become important. On grounds of the presented data, we expect that the areal distribution of sediment in a bedrock channel dominates total energy delivery and that partial energy delivery to the bed through a sediment layer can be neglected for most modelling purposes.
期刊介绍:
Geodinamica Acta provides an international and interdisciplinary forum for the publication of results of recent research dealing with both internal and external geodynamics. Its aims to promote discussion between the various disciplines that work on the dynamics of the lithosphere and hydrosphere. There are no constraints over themes, provided the main thrust of the paper relates to Earth''s internal and external geodynamics. The Journal encourages the submission of papers in all fields of earth sciences, such as biostratigraphy, geochemistry, geochronology and thermochronology, geohazards and their societal impacts, geomorphology, geophysics, glaciology, igneous and metamorphic petrology, magmatism, marine geology, metamorphism, mineral-deposits and energy resources, mineralogy, orogeny, palaeoclimatology, palaeoecology, paleoceanograpgy, palaeontology, petroleum geology, sedimentology, seismology and earthquakes, stratigraphy, structural geology, surface processes, tectonics (neoteoctonic, plate tectonics, seismo-tectonics, Active tectonics) and volcanism.
Geodinamica Acta publishes high quality, peer-reviewed original and timely scientific papers, comprehensive review articles on hot topics of current interest, rapid communications relating to a significant advance in the earth sciences with broad interest, and discussions of papers that have already appeared in recent issues of the journal. Book reviews are also included. Submitted papers must have international appeal and regional implications; they should present work that would be of interest to many different specialists. Geographic coverage is global and work on any part of the world is considered. The Journal also publishes thematic sets of papers on topical aspects of earth sciences or special issues of selected papers from conferences.