{"title":"Building Better Machine Learning Models for Rhetorical Analyses: The Use of Rhetorical Feature Sets for Training Artificial Neural Network Models","authors":"Z. Majdik, James Wynn","doi":"10.1080/10572252.2022.2077452","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we investigate two approaches to building artificial neural network models to compare their effectiveness for accurately classifying rhetorical structures across multiple (non-binary) classes in small textual datasets. We find that the most accurate type of model can be designed by using a custom rhetorical feature list coupled with general-language word vector representations, which outperforms models with more computing-intensive architectures.","PeriodicalId":45536,"journal":{"name":"Technical Communication Quarterly","volume":"32 1","pages":"63 - 78"},"PeriodicalIF":2.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Communication Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10572252.2022.2077452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In this paper, we investigate two approaches to building artificial neural network models to compare their effectiveness for accurately classifying rhetorical structures across multiple (non-binary) classes in small textual datasets. We find that the most accurate type of model can be designed by using a custom rhetorical feature list coupled with general-language word vector representations, which outperforms models with more computing-intensive architectures.