Forecasting LNG prices with the kernel vector autoregressive model

IF 1.1 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geosystem Engineering Pub Date : 2020-01-02 DOI:10.1080/12269328.2019.1664337
J. Shim, Hong Chong Cho
{"title":"Forecasting LNG prices with the kernel vector autoregressive model","authors":"J. Shim, Hong Chong Cho","doi":"10.1080/12269328.2019.1664337","DOIUrl":null,"url":null,"abstract":"ABSTRACT LNG prices in the Northeast Asian countries are closely related multivariate time series, because they are traded with similar contracts. For the analysis of multivariate time series data, the vector autoregressive model is one of the most successful tools to use. But the vector autoregressive model assumes a linear relationship between the present and previous data, which sometimes provides unreliable results. To address this problem, we applied the weighted version of the least squares support vector machine to the vector autoregressive model. In numerical studies with liquefied natural gas importing prices in four Asian countries, comparisons with other methods indicated that the proposed kernel vector autoregressive model provides more satisfying results on fitting and forecasting for multivariate time series.","PeriodicalId":12714,"journal":{"name":"Geosystem Engineering","volume":"23 1","pages":"37 - 42"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/12269328.2019.1664337","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystem Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/12269328.2019.1664337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT LNG prices in the Northeast Asian countries are closely related multivariate time series, because they are traded with similar contracts. For the analysis of multivariate time series data, the vector autoregressive model is one of the most successful tools to use. But the vector autoregressive model assumes a linear relationship between the present and previous data, which sometimes provides unreliable results. To address this problem, we applied the weighted version of the least squares support vector machine to the vector autoregressive model. In numerical studies with liquefied natural gas importing prices in four Asian countries, comparisons with other methods indicated that the proposed kernel vector autoregressive model provides more satisfying results on fitting and forecasting for multivariate time series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用核向量自回归模型预测LNG价格
东北亚国家的LNG价格是密切相关的多变量时间序列,因为它们是用类似的合约进行交易的。对于多变量时间序列数据的分析,向量自回归模型是最成功的工具之一。但矢量自回归模型假设当前数据与先前数据之间存在线性关系,有时会提供不可靠的结果。为了解决这个问题,我们将最小二乘支持向量机的加权版本应用于向量自回归模型。通过对亚洲四个国家液化天然气进口价格的数值研究,与其他方法的比较表明,所提出的核向量自回归模型在多元时间序列的拟合和预测方面取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geosystem Engineering
Geosystem Engineering GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
0.00%
发文量
11
期刊最新文献
Hydrometallurgical recovery of copper from the leach liquor of waste PCBs Recovery of lead from the leaching residue derived from zinc production plant: process optimization and kinetic modeling Insight to the cesium entrapment by natural shale: implications to geological disposal of nuclear waste A New model for inferring interwell connectivity between horizontal wells and balanced injection for horizontal injectors Study of the dynamics of changes in the thermal conductivity coefficient of organic deposits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1