{"title":"Mechanism of Nitric Oxide Release. I. Two-electron Reduction of Sodium Nitroprusside by l -cysteine in Aqueous Solution","authors":"James N. Smith, T. Dasgupta","doi":"10.1080/10286620210352","DOIUrl":null,"url":null,"abstract":"Sodium nitroprusside (SNP) is a well-known vasodilator, which activates the cytosolic isozyme guanylate cyclase. It is quite stable by itself in aqueous solution and in the dark, but produces nitric oxide spontaneously under the appropriate reducing conditions. Both the neutral nitric oxide (NO) and the nitroxyl anion (NO m ) can be produced from SNP depending on the condition employed. NO release is favored at lower pH and cysteine concentration while NO m formation is more likely to occur at higher pH (>7) and cysteine concentration. NO was measured by electrochemical method and the chemical detection of NH 2 OH and NO 2 m are evidences of NO m formation. The mechanism of the reaction was found to be very complicated and involved three clear stages. NO and NO m are postulated to form in the first and third stages, respectively. All three stages showed cysteine dependence and were also affected by the pH of the solution. The first two stages resembled stepwise reversible two-electron reduction of NO + to...","PeriodicalId":54977,"journal":{"name":"Inorganic Reaction Mechanisms","volume":"3 1","pages":"181-195"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Reaction Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10286620210352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Sodium nitroprusside (SNP) is a well-known vasodilator, which activates the cytosolic isozyme guanylate cyclase. It is quite stable by itself in aqueous solution and in the dark, but produces nitric oxide spontaneously under the appropriate reducing conditions. Both the neutral nitric oxide (NO) and the nitroxyl anion (NO m ) can be produced from SNP depending on the condition employed. NO release is favored at lower pH and cysteine concentration while NO m formation is more likely to occur at higher pH (>7) and cysteine concentration. NO was measured by electrochemical method and the chemical detection of NH 2 OH and NO 2 m are evidences of NO m formation. The mechanism of the reaction was found to be very complicated and involved three clear stages. NO and NO m are postulated to form in the first and third stages, respectively. All three stages showed cysteine dependence and were also affected by the pH of the solution. The first two stages resembled stepwise reversible two-electron reduction of NO + to...