{"title":"Scaled Gromov Four-Point Condition for Network Graph Curvature Computation","authors":"E. Jonckheere, P. Lohsoonthorn, F. Ariaei","doi":"10.1080/15427951.2011.601233","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we extend the concept of scaled Gromov hyperbolic graph, originally developed for the thin triangle condition (TTC), to the computationally simplified, but less intuitive, four-point condition (FPC). The original motivation was that for a large but finite network graph to enjoy some of the typical properties to be expected in negatively curved Riemannian manifolds, the delta measuring the thinness of a triangle scaled by its diameter must be below a certain threshold all across the graph. Here we develop various ways of scaling the 4-point delta, and develop upper bounds for the scaled 4-point delta in various spaces. A significant theoretical advantage of the TTC over the FPC is that the latter allows for a Gromov-like characterization of Ptolemaic spaces. As a major network application, it is shown that scale-free networks tend to be scaled Gromov hyperbolic, while small-world networks are rather scaled positively curved.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"7 1","pages":"137 - 177"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2011.601233","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2011.601233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 23
Abstract
Abstract In this paper, we extend the concept of scaled Gromov hyperbolic graph, originally developed for the thin triangle condition (TTC), to the computationally simplified, but less intuitive, four-point condition (FPC). The original motivation was that for a large but finite network graph to enjoy some of the typical properties to be expected in negatively curved Riemannian manifolds, the delta measuring the thinness of a triangle scaled by its diameter must be below a certain threshold all across the graph. Here we develop various ways of scaling the 4-point delta, and develop upper bounds for the scaled 4-point delta in various spaces. A significant theoretical advantage of the TTC over the FPC is that the latter allows for a Gromov-like characterization of Ptolemaic spaces. As a major network application, it is shown that scale-free networks tend to be scaled Gromov hyperbolic, while small-world networks are rather scaled positively curved.