Fast Low-Cost Estimation of Network Properties Using Random Walks

Q3 Mathematics Internet Mathematics Pub Date : 2013-12-14 DOI:10.1080/15427951.2016.1164100
C. Cooper, T. Radzik, Yiannis Siantos
{"title":"Fast Low-Cost Estimation of Network Properties Using Random Walks","authors":"C. Cooper, T. Radzik, Yiannis Siantos","doi":"10.1080/15427951.2016.1164100","DOIUrl":null,"url":null,"abstract":"Abstract We study the use of random walks as an efficient method to estimate global properties of large connected undirected graphs. Typical examples of the properties of interest include the number of edges, vertices, and triangles, and more generally, the number of small fixed subgraphs. We consider two methods based on first returns of random walks: (1) the cycle formula of regenerative processes and (2) weighted random walks with edge weights defined by the property under investigation. We review the theoretical foundations for these methods and indicate how they can be adapted for the general nonintrusive investigation of large online networks. The expected value and variance of the time of the first return of a random walk decrease with increasing vertex weight, so for a given time budget, returns to high-weight vertices should give the best property estimates. We present theoretical and experimental results on the rate of convergence of the estimates as a function of the number of returns of a random walk to a given start vertex. We made experiments to estimate the number of vertices, edges, and triangles for two test graphs.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"12 1","pages":"221 - 238"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2016.1164100","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2016.1164100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

Abstract

Abstract We study the use of random walks as an efficient method to estimate global properties of large connected undirected graphs. Typical examples of the properties of interest include the number of edges, vertices, and triangles, and more generally, the number of small fixed subgraphs. We consider two methods based on first returns of random walks: (1) the cycle formula of regenerative processes and (2) weighted random walks with edge weights defined by the property under investigation. We review the theoretical foundations for these methods and indicate how they can be adapted for the general nonintrusive investigation of large online networks. The expected value and variance of the time of the first return of a random walk decrease with increasing vertex weight, so for a given time budget, returns to high-weight vertices should give the best property estimates. We present theoretical and experimental results on the rate of convergence of the estimates as a function of the number of returns of a random walk to a given start vertex. We made experiments to estimate the number of vertices, edges, and triangles for two test graphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机漫步的网络属性快速低成本估计
摘要研究了随机游走作为估计大连通无向图全局性质的一种有效方法。我们感兴趣的属性的典型示例包括边、顶点和三角形的数量,以及更一般的小固定子图的数量。我们考虑了两种基于随机行走的首次返回的方法:(1)再生过程的循环公式和(2)由所研究的性质定义边权的加权随机行走。我们回顾了这些方法的理论基础,并指出它们如何适用于大型在线网络的一般非侵入性调查。随机漫步第一次返回时间的期望值和方差随着顶点权重的增加而减小,因此对于给定的时间预算,返回高权重顶点应该给出最好的属性估计。我们提出的理论和实验结果的收敛速度估计作为一个函数的随机数漫步的返回到一个给定的开始顶点。我们做了一些实验来估计两个测试图的顶点、边和三角形的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
期刊最新文献
Graph search via star sampling with and without replacement Preferential Placement for Community Structure Formation A Multi-type Preferential Attachment Tree Editorial Board EOV A Theory of Network Security: Principles of Natural Selection and Combinatorics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1