{"title":"An Introduction to Temporal Graphs: An Algorithmic Perspective*","authors":"O. Michail","doi":"10.1080/15427951.2016.1177801","DOIUrl":null,"url":null,"abstract":"Abstract A temporal graph is, informally speaking, a graph that changes with time. When time is discrete and only the relationships between the participating entities may change and not the entities themselves, a temporal graph may be viewed as a sequence G1, G2…, Gl of static graphs over the same (static) set of nodes V. Though static graphs have been extensively studied, for their temporal generalization we are still far from having a concrete set of structural and algorithmic principles. Recent research shows that many graph properties and problems become radically different and usually substantially more difficult when an extra time dimension is added to them. Moreover, there is already a rich and rapidly growing set of modern systems and applications that can be naturally modeled and studied via temporal graphs. This, further motivates the need for the development of a temporal extension of graph theory. We survey here recent results on temporal graphs and temporal graph problems that have appeared in the Computer Science community.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2016.1177801","citationCount":"192","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2016.1177801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 192
Abstract
Abstract A temporal graph is, informally speaking, a graph that changes with time. When time is discrete and only the relationships between the participating entities may change and not the entities themselves, a temporal graph may be viewed as a sequence G1, G2…, Gl of static graphs over the same (static) set of nodes V. Though static graphs have been extensively studied, for their temporal generalization we are still far from having a concrete set of structural and algorithmic principles. Recent research shows that many graph properties and problems become radically different and usually substantially more difficult when an extra time dimension is added to them. Moreover, there is already a rich and rapidly growing set of modern systems and applications that can be naturally modeled and studied via temporal graphs. This, further motivates the need for the development of a temporal extension of graph theory. We survey here recent results on temporal graphs and temporal graph problems that have appeared in the Computer Science community.