I. Franco, C. Vischetti, M. T. Baca, M. Nobili, C. Mondini, L. Leita
{"title":"Adsorption of linuron and metamitron on soil and peats at two different decomposition stages","authors":"I. Franco, C. Vischetti, M. T. Baca, M. Nobili, C. Mondini, L. Leita","doi":"10.1080/15320389709383567","DOIUrl":null,"url":null,"abstract":"We studied the adsorption of two herbicides of different polarity, linuron and metamitron, by a mineral soil and two peats at different decomposition stages and determined Freundlich and distribution coefficients per unit of organic matter. The Freundlich adsorption constant (K1) was 20‐to 30‐fold higher in the case of linuron and 40‐to 90‐fold higher for metamitron for the organic materials (peats) than for the mineral soil, reflecting adsorption dependence on both organic matter content and type. The well‐decomposed peat showed the highest affinity for both herbicides. Hydro‐phobic bonding is suggested as a possible explanation. For linuron, the variation in K, was reduced to less than a twofold variation in Koc by normalizing adsorption to organic carbon, whereas for metamitron, Koc values were not constant, confirming that this parameter may be of little meaning for polar compounds.","PeriodicalId":49505,"journal":{"name":"Soil & Sediment Contamination","volume":"6 1","pages":"307-315"},"PeriodicalIF":1.6000,"publicationDate":"1997-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15320389709383567","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Sediment Contamination","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15320389709383567","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 10
Abstract
We studied the adsorption of two herbicides of different polarity, linuron and metamitron, by a mineral soil and two peats at different decomposition stages and determined Freundlich and distribution coefficients per unit of organic matter. The Freundlich adsorption constant (K1) was 20‐to 30‐fold higher in the case of linuron and 40‐to 90‐fold higher for metamitron for the organic materials (peats) than for the mineral soil, reflecting adsorption dependence on both organic matter content and type. The well‐decomposed peat showed the highest affinity for both herbicides. Hydro‐phobic bonding is suggested as a possible explanation. For linuron, the variation in K, was reduced to less than a twofold variation in Koc by normalizing adsorption to organic carbon, whereas for metamitron, Koc values were not constant, confirming that this parameter may be of little meaning for polar compounds.
期刊介绍:
When it comes to assessing and mitigating contaminated soils and sediments, there is no substitute for having the very latest tools, techniques and methodologies at your fingertips to help you deal with these issues efficiently and cost-effectively.
This is just the kind of essential expertise you’ll only find in Soil and Sediment Contamination . This internationally, peer-reviewed publication focuses on soil and sediment contamination from:
-Sludges-
Petroleum-
Petrochemicals-
Chlorinated hydrocarbons-
Pesticides-
Lead and other heavy metals.
Get detailed descriptions of all the latest and most efficient offsite and in situ remediation techniques, strategies for assessing health effects and hazards, and tips for dealing with everyday regulatory and legal issues. With the state-of-the-art tools that Soil and Sediment Contamination provides, you can successfully assess, mitigate, and solve both rural and urban soil contamination problems as efficiently and economically as possible.