{"title":"A novel metamaterial for miniaturization and multi-resonance in antenna","authors":"P. Dawar, N. S. Raghava, A. De","doi":"10.1080/23311940.2015.1123595","DOIUrl":null,"url":null,"abstract":"Abstract A new type of metamaterial-inspired patch antenna designed for having multi-resonance and minituarization has been elucidated. A novel metamaterial formed by combining 2 segment labyrinth and capacitive loaded strip has been designed by combining negative permeability and negative permittivity characteristics respectively, to form a Double Negative Group metamaterial. By adding 4 unit cells to the microstrip patch antenna resonating at 30 GHz, secondary resonances have been created around 8.5, 17.7, 20 and 23.7 GHz. Seventy-two per cent miniaturization of the structure is obtained using metamaterial-inspired antenna, but at the cost of reduction in bandwidth.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2015.1123595","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2015.1123595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract A new type of metamaterial-inspired patch antenna designed for having multi-resonance and minituarization has been elucidated. A novel metamaterial formed by combining 2 segment labyrinth and capacitive loaded strip has been designed by combining negative permeability and negative permittivity characteristics respectively, to form a Double Negative Group metamaterial. By adding 4 unit cells to the microstrip patch antenna resonating at 30 GHz, secondary resonances have been created around 8.5, 17.7, 20 and 23.7 GHz. Seventy-two per cent miniaturization of the structure is obtained using metamaterial-inspired antenna, but at the cost of reduction in bandwidth.