Md. Tofajjol Hossen Bhuiyan, M. A. Rahman, Md Atikur Rahman, R. Sultana, M. R. Mostafa., Asmaul Husna Tania, M. R. Sarker
{"title":"Synthesis and characterization of high-quality cobalt vanadate crystals and their applications in lithium-ion batteries","authors":"Md. Tofajjol Hossen Bhuiyan, M. A. Rahman, Md Atikur Rahman, R. Sultana, M. R. Mostafa., Asmaul Husna Tania, M. R. Sarker","doi":"10.1080/23311940.2016.1265778","DOIUrl":null,"url":null,"abstract":"Abstract High-quality cobalt vanadate crystals have been synthesized by solid-state reaction route. Structure and morphology of the synthesized powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. The XRD patterns revealed that the as prepared materials are of high crystallinity and high quality. The SEM images showed that the crystalline CoV2O6 material is very uniform and well separated, with particle (of) area ~252 μm. The electronic and optical properties were investigated by impedance analyzer and UV–visible spectrophotometer. Temperature-dependent electrical resistivity was measured using four-probe technique. The crystalline CoV2O6 material is a semiconductor and its activation energy is 0.05 eV.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2016.1265778","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2016.1265778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract High-quality cobalt vanadate crystals have been synthesized by solid-state reaction route. Structure and morphology of the synthesized powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. The XRD patterns revealed that the as prepared materials are of high crystallinity and high quality. The SEM images showed that the crystalline CoV2O6 material is very uniform and well separated, with particle (of) area ~252 μm. The electronic and optical properties were investigated by impedance analyzer and UV–visible spectrophotometer. Temperature-dependent electrical resistivity was measured using four-probe technique. The crystalline CoV2O6 material is a semiconductor and its activation energy is 0.05 eV.