Yu Haipeng, Chen Xiaoge, Zhang Hongsong, Zhang Haoming, Zhao Yongde, Liu Yanxu, Tang An
{"title":"Preparation and thermal properties of Sm2AlTaO7","authors":"Yu Haipeng, Chen Xiaoge, Zhang Hongsong, Zhang Haoming, Zhao Yongde, Liu Yanxu, Tang An","doi":"10.1080/23311940.2016.1244244","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the Sm2AlTaO7 was synthesized by solid reaction method, and its phase composition, microstructure, and thermophysical properties were investigated. XRD results show that pure Sm2AlTaO7 with single pyrochlore-type structure is prepared successfully. The thermal conductivity of Sm2AlTaO7 at 1,273 K is about 1.13 W m−1 K−1, which is much lower than that of YSZ. The low thermal conductivity can be attributed to the phonon scattering caused by substituting atoms. Its thermal expansion coefficient is lower than that of Sm2Ce2O7, but close to that of YSZ. There is no phase transformation occurred between 293 and 1,673 K. The excellent thermophysical property means that the Sm2AlTaO7 has potential to be used as candidate ceramic material for thermal barrier coatings.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2016.1244244","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2016.1244244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract In this work, the Sm2AlTaO7 was synthesized by solid reaction method, and its phase composition, microstructure, and thermophysical properties were investigated. XRD results show that pure Sm2AlTaO7 with single pyrochlore-type structure is prepared successfully. The thermal conductivity of Sm2AlTaO7 at 1,273 K is about 1.13 W m−1 K−1, which is much lower than that of YSZ. The low thermal conductivity can be attributed to the phonon scattering caused by substituting atoms. Its thermal expansion coefficient is lower than that of Sm2Ce2O7, but close to that of YSZ. There is no phase transformation occurred between 293 and 1,673 K. The excellent thermophysical property means that the Sm2AlTaO7 has potential to be used as candidate ceramic material for thermal barrier coatings.