Ecological data prediction and visualization system

Q1 Biochemistry, Genetics and Molecular Biology Frontiers in Life Science Pub Date : 2015-05-15 DOI:10.1080/21553769.2015.1041167
Sorayya Malek, Cham Hui, L. C. Fong, Mogeeb A. A. Mosleh, P. Milow, S. K. Dhillon, Sharifah M. Syed
{"title":"Ecological data prediction and visualization system","authors":"Sorayya Malek, Cham Hui, L. C. Fong, Mogeeb A. A. Mosleh, P. Milow, S. K. Dhillon, Sharifah M. Syed","doi":"10.1080/21553769.2015.1041167","DOIUrl":null,"url":null,"abstract":"Temporal patterns in ecological data can be visualized and communicated effectively through graphical means. The aim of this study was to develop a data prediction and visualization system based on historical data and thematic map technology to visualize forecast temporal ecological changes. The visualization system consists of prediction and data visualization modules. The prediction module is developed using a hybrid evolutionary algorithm (HEA) to classify and predict noisy ecological data. The visualization module is developed using Dotnet Framework 2.0 to implement thematic cartography for volume visualization. The visualization system is evaluated by its capability in representing the output data on a map, and by predicting the abundance of Chlorophyta based on other water quality parameters. Rules for predicting Chlorophyta abundance had a success rate of almost 90%. The integration of computational data mining using HEA and visualization using thematic maps promises practical solutions and better techniques for forecasting temporal ecological changes, especially when data sets have complex relationships without clear distinction between various variables.","PeriodicalId":12756,"journal":{"name":"Frontiers in Life Science","volume":"8 1","pages":"387 - 398"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21553769.2015.1041167","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Life Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21553769.2015.1041167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

Abstract

Temporal patterns in ecological data can be visualized and communicated effectively through graphical means. The aim of this study was to develop a data prediction and visualization system based on historical data and thematic map technology to visualize forecast temporal ecological changes. The visualization system consists of prediction and data visualization modules. The prediction module is developed using a hybrid evolutionary algorithm (HEA) to classify and predict noisy ecological data. The visualization module is developed using Dotnet Framework 2.0 to implement thematic cartography for volume visualization. The visualization system is evaluated by its capability in representing the output data on a map, and by predicting the abundance of Chlorophyta based on other water quality parameters. Rules for predicting Chlorophyta abundance had a success rate of almost 90%. The integration of computational data mining using HEA and visualization using thematic maps promises practical solutions and better techniques for forecasting temporal ecological changes, especially when data sets have complex relationships without clear distinction between various variables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生态数据预测与可视化系统
生态数据的时间格局可以通过图形化的手段进行可视化和有效的交流。本研究的目的是开发一个基于历史数据和专题地图技术的数据预测和可视化系统,以可视化预测时间生态变化。可视化系统由预测和数据可视化两个模块组成。预测模块采用混合进化算法(HEA)对噪声生态数据进行分类和预测。可视化模块采用Dotnet Framework 2.0开发,实现专题制图的体可视化。通过可视化系统在地图上表示输出数据的能力,以及基于其他水质参数预测绿藻丰度的能力,对该系统进行了评价。预测绿藻丰度的规则准确率接近90%。使用HEA的计算数据挖掘与使用专题地图的可视化相结合,为预测时间生态变化提供了实用的解决方案和更好的技术,特别是当数据集具有复杂的关系而各种变量之间没有明确区分时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Life Science
Frontiers in Life Science MULTIDISCIPLINARY SCIENCES-
CiteScore
5.50
自引率
0.00%
发文量
0
期刊介绍: Frontiers in Life Science publishes high quality and innovative research at the frontier of biology with an emphasis on interdisciplinary research. We particularly encourage manuscripts that lie at the interface of the life sciences and either the more quantitative sciences (including chemistry, physics, mathematics, and informatics) or the social sciences (philosophy, anthropology, sociology and epistemology). We believe that these various disciplines can all contribute to biological research and provide original insights to the most recurrent questions.
期刊最新文献
Factors affecting population structure and fruit production of Strychnos innocua Delile and Strychnos spinosa Lam. in Benin, West Africa Characterizing the hindgut microbiome in healthy and ketotic cows Cashmere cyclic growth affected by different photoperiods alters DNA methylation patterns Gene Polymorphisms of the antioxidant enzymes NOX, GSTP, and GPX and diabetic nephropathy risk in Saudi patients with type 2 diabetes Ferroptosis plays a role in osteoarthritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1