{"title":"Classification-based symbolic indoor positioning over the Miskolc IIS Data-set","authors":"J. Tamás, Zsolt Tóth","doi":"10.1080/17489725.2018.1455992","DOIUrl":null,"url":null,"abstract":"Abstract Determination of indoor position is vital for the creation of smart environments. Symbolic indoor positioning algorithms determine the location as a well-defined part of the building, such as a room, a corridor or a floor. Performance analysis of classification-based symbolic indoor positioning methods are presented in this paper. Symbolic positioning can be considered as a classification task, where position denotes the category and the attributes are the measured values. Evaluation and comparison of the selected classification methods are performed over a hybrid data-set which was recorded by the ILONA (Indoor Localisation and Navigation) System. These experiments were performed in RapidMiner and the Weka framework. Accuracy is the base of comparison and the following classification methods were used: k–NN, Naive Bayes, Decision Tree, Rule Induction and Artificial Neural Network. Comparison is used to recommend a classification-based symbolic indoor positioning method to be implemented in the ILONA System. Experimental results show that the k–NN, Naive Bayes with 1 kernel and ANN classifiers achieved better than 90% accuracy. As a result of our experiments, k–NN, Naive Bayes with 1 kernel- and ANN-based classification methods are recommended.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17489725.2018.1455992","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17489725.2018.1455992","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract Determination of indoor position is vital for the creation of smart environments. Symbolic indoor positioning algorithms determine the location as a well-defined part of the building, such as a room, a corridor or a floor. Performance analysis of classification-based symbolic indoor positioning methods are presented in this paper. Symbolic positioning can be considered as a classification task, where position denotes the category and the attributes are the measured values. Evaluation and comparison of the selected classification methods are performed over a hybrid data-set which was recorded by the ILONA (Indoor Localisation and Navigation) System. These experiments were performed in RapidMiner and the Weka framework. Accuracy is the base of comparison and the following classification methods were used: k–NN, Naive Bayes, Decision Tree, Rule Induction and Artificial Neural Network. Comparison is used to recommend a classification-based symbolic indoor positioning method to be implemented in the ILONA System. Experimental results show that the k–NN, Naive Bayes with 1 kernel and ANN classifiers achieved better than 90% accuracy. As a result of our experiments, k–NN, Naive Bayes with 1 kernel- and ANN-based classification methods are recommended.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.