Madiha Ahmed, Naira Campbell-Kyureghyan, Karen Frost, G. Bertocci
{"title":"Identifying Challenges to Securing Wheeled Mobility Devices Using Tiedowns and Occupant Restraint Systems From the User Perspective","authors":"Madiha Ahmed, Naira Campbell-Kyureghyan, Karen Frost, G. Bertocci","doi":"10.1080/21577323.2014.964379","DOIUrl":null,"url":null,"abstract":"OCCUPATIONAL APPLICATIONS Wheeled mobility device passengers rely upon bus operators for proper securement of the wheelchair tiedown and occupant restraint system during transit. Yet, wheeled mobility devices are rarely properly secured, and passengers are often unrestrained during transit. This study investigated the usability of wheelchair tiedown and occupant restraint systems aboard transit systems to identify challenges resulting in improper securement or non-use of the wheelchair tiedown and occupant restraint system system. The task demands and bus operator's functional limitations appeared mismatched, jeopardizing the wheeled mobility device user's safety during transit. The current findings suggest the need to incorporate the bus operator's role during subsequent design or redesign of the wheelchair tiedown and occupant restraint system task. TECHNICAL ABSTRACT Rationale: Public transportation buses are required to be equipped with wheelchair tiedowns and occupant restraint systems to ensure safe transit of wheeled mobility device users. Wheeled mobility device users rely upon bus operators for wheeled mobility device securement, yet proper wheelchair tiedown and occupant restraint system implementation is often not performed. Prior research efforts in wheelchair transportation safety have not considered the bus operator's physical health as a challenge to securing a wheeled mobility device passenger. Purpose: The current study characterized musculoskeletal pain and discomfort, along with functional limitations, among bus drivers in the context of assisting wheeled mobility device passengers. Findings from this study were then synthesized with a previously reported ergonomic analysis to provide a more comprehensive understanding of factors that may pose challenges to bus operators securing a wheeled mobility device passenger. Methods: Musculoskeletal pain and functional limitations were determined by self-reports using a customized and standardized questionnaire. Previously reported task demands were quantified by ergonomic analyses of the wheelchair tiedown and occupant restraint system task. Results: Eighty-three percent of the operators reported musculoskeletal pain/discomfort in at least one body region, and 60% reported experiencing pain across multiple regions of the body. The highest number of prevalent reports of pain and functional limitations identified by the operators were at the knees, low back, neck, and shoulders. Ergonomic analyses revealed higher demands for these same four body regions, suggesting limited ability of the operators to perform the wheelchair tiedown and occupant restraint system task properly. Conclusions: The mismatch between the wheelchair tiedown and occupant restraint system work-related factors and the bus operator's functional limitations may contribute to the observed improper securement. These findings suggest a redesign of the wheelchair tiedown and occupant restraint system is warranted, which should incorporate the role of bus operators during the process.","PeriodicalId":73331,"journal":{"name":"IIE transactions on occupational ergonomics and human factors","volume":"2 1","pages":"104 - 94"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21577323.2014.964379","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE transactions on occupational ergonomics and human factors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21577323.2014.964379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
OCCUPATIONAL APPLICATIONS Wheeled mobility device passengers rely upon bus operators for proper securement of the wheelchair tiedown and occupant restraint system during transit. Yet, wheeled mobility devices are rarely properly secured, and passengers are often unrestrained during transit. This study investigated the usability of wheelchair tiedown and occupant restraint systems aboard transit systems to identify challenges resulting in improper securement or non-use of the wheelchair tiedown and occupant restraint system system. The task demands and bus operator's functional limitations appeared mismatched, jeopardizing the wheeled mobility device user's safety during transit. The current findings suggest the need to incorporate the bus operator's role during subsequent design or redesign of the wheelchair tiedown and occupant restraint system task. TECHNICAL ABSTRACT Rationale: Public transportation buses are required to be equipped with wheelchair tiedowns and occupant restraint systems to ensure safe transit of wheeled mobility device users. Wheeled mobility device users rely upon bus operators for wheeled mobility device securement, yet proper wheelchair tiedown and occupant restraint system implementation is often not performed. Prior research efforts in wheelchair transportation safety have not considered the bus operator's physical health as a challenge to securing a wheeled mobility device passenger. Purpose: The current study characterized musculoskeletal pain and discomfort, along with functional limitations, among bus drivers in the context of assisting wheeled mobility device passengers. Findings from this study were then synthesized with a previously reported ergonomic analysis to provide a more comprehensive understanding of factors that may pose challenges to bus operators securing a wheeled mobility device passenger. Methods: Musculoskeletal pain and functional limitations were determined by self-reports using a customized and standardized questionnaire. Previously reported task demands were quantified by ergonomic analyses of the wheelchair tiedown and occupant restraint system task. Results: Eighty-three percent of the operators reported musculoskeletal pain/discomfort in at least one body region, and 60% reported experiencing pain across multiple regions of the body. The highest number of prevalent reports of pain and functional limitations identified by the operators were at the knees, low back, neck, and shoulders. Ergonomic analyses revealed higher demands for these same four body regions, suggesting limited ability of the operators to perform the wheelchair tiedown and occupant restraint system task properly. Conclusions: The mismatch between the wheelchair tiedown and occupant restraint system work-related factors and the bus operator's functional limitations may contribute to the observed improper securement. These findings suggest a redesign of the wheelchair tiedown and occupant restraint system is warranted, which should incorporate the role of bus operators during the process.