{"title":"Grain-scale investigation of swash zone sediment transport on a gravel beach using DEM-MPS coupled scheme","authors":"T. Tazaki, E. Harada, H. Gotoh","doi":"10.1080/21664250.2023.2202958","DOIUrl":null,"url":null,"abstract":"ABSTRACT Sediment transport in the swash zone directly affects beach changes such as shoreline recession; thus, detailed understandings of sediment transport mechanisms are necessary to accurately estimate the short-time scales sediment transport rate. However, these detailed mechanisms under runup waves have not been elucidated because of the complex solid-gas-liquid multiphase turbulence flow. In this study, we attempt to numerically investigate the sediment grain-scale mechanism to overcome the shortcomings of experimental measurements and the free surface treatment in many numerical simulations. The gravel transport process on a sloped beach under regular waves was simulated using a 2D coupled model of the discrete element method (DEM) and a modified moving particle semi-implicit (MPS) method; a sub-model was built into the DEM-MPS model to improve fluid volume conservation. After validating the simulated performance by comparing it to a previous experiment, the gravel motions were investigated for turbulence and inner beach structure. The Shields number, estimated using the drag force distribution, revealed that significant turbulence contributed to onshore gravel transport near the rundown limit. The inter-gravel contact structure inside the beach explained the decrease in offshore sediment transport during backwash as increased resistance to gravel motions resulting from beach compaction.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2023.2202958","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Sediment transport in the swash zone directly affects beach changes such as shoreline recession; thus, detailed understandings of sediment transport mechanisms are necessary to accurately estimate the short-time scales sediment transport rate. However, these detailed mechanisms under runup waves have not been elucidated because of the complex solid-gas-liquid multiphase turbulence flow. In this study, we attempt to numerically investigate the sediment grain-scale mechanism to overcome the shortcomings of experimental measurements and the free surface treatment in many numerical simulations. The gravel transport process on a sloped beach under regular waves was simulated using a 2D coupled model of the discrete element method (DEM) and a modified moving particle semi-implicit (MPS) method; a sub-model was built into the DEM-MPS model to improve fluid volume conservation. After validating the simulated performance by comparing it to a previous experiment, the gravel motions were investigated for turbulence and inner beach structure. The Shields number, estimated using the drag force distribution, revealed that significant turbulence contributed to onshore gravel transport near the rundown limit. The inter-gravel contact structure inside the beach explained the decrease in offshore sediment transport during backwash as increased resistance to gravel motions resulting from beach compaction.
期刊介绍:
Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.