S.E. Sharapov, D. Borba, A. Fasoli, W. Kerner, L.-G. Eriksson, R.F. Heeter, G.T.A. Huysmans, M.J. Mantsinen
{"title":"Stability of alpha particle driven Alfvén eigenmodes in high performance JET DT plasmas","authors":"S.E. Sharapov, D. Borba, A. Fasoli, W. Kerner, L.-G. Eriksson, R.F. Heeter, G.T.A. Huysmans, M.J. Mantsinen","doi":"10.1088/0029-5515/39/3/307","DOIUrl":null,"url":null,"abstract":"The stability of alpha particle driven Alfvén eigenmodes (AEs) is analysed in high fusion power DT discharges on JET. Both hot ion H mode and shear optimized discharges are considered. Unstable AEs are not observed in hot ion H mode DT discharges even at the highest fusion power with alpha particle beta βα (0) ≈ 0.7%. Theoretical analysis shows that the AE stabilization is caused by the large plasma pressure, which prevents the existence of core localized AEs at peak fusion performance. Kinetic toroidal AEs (KTAEs), which persist at high plasma pressure, are found to be radially extended and subject to strong damping. The stability analysis based on the CASTOR-K code confirms that AEs cannot be driven unstable by alpha particles in high performance hot ion H mode discharges performed at JET. Alfvén eigenmodes in shear optimized regimes are more unstable than those in the hot ion H mode mainly due to the elevated central safety factor q, which increases the efficiency of AE interaction with energetic ions. As a consequence, AEs are observed in shear optimized DT discharges when ion cyclotron heating as low as 1 MW is applied.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"39 1","pages":"373 - 388"},"PeriodicalIF":3.5000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/0029-5515/39/3/307","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0029-5515/39/3/307","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of alpha particle driven Alfvén eigenmodes (AEs) is analysed in high fusion power DT discharges on JET. Both hot ion H mode and shear optimized discharges are considered. Unstable AEs are not observed in hot ion H mode DT discharges even at the highest fusion power with alpha particle beta βα (0) ≈ 0.7%. Theoretical analysis shows that the AE stabilization is caused by the large plasma pressure, which prevents the existence of core localized AEs at peak fusion performance. Kinetic toroidal AEs (KTAEs), which persist at high plasma pressure, are found to be radially extended and subject to strong damping. The stability analysis based on the CASTOR-K code confirms that AEs cannot be driven unstable by alpha particles in high performance hot ion H mode discharges performed at JET. Alfvén eigenmodes in shear optimized regimes are more unstable than those in the hot ion H mode mainly due to the elevated central safety factor q, which increases the efficiency of AE interaction with energetic ions. As a consequence, AEs are observed in shear optimized DT discharges when ion cyclotron heating as low as 1 MW is applied.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.