Kyle Sylakowski, Peter Hwang, Amritha Justin, Hanshuang Shao, Diana Whaley, Yadong Wang, Alan Wells
{"title":"Matricellular protein Tenascin-C enhances mesenchymal stem cell angiogenic and wound healing efficacy under ischemic conditions","authors":"Kyle Sylakowski, Peter Hwang, Amritha Justin, Hanshuang Shao, Diana Whaley, Yadong Wang, Alan Wells","doi":"10.1002/term.3367","DOIUrl":null,"url":null,"abstract":"<p>Human mesenchymal stem cells/multipotent stromal cells (MSCs) hold great promise in aiding wound healing through their ability to modulate all phases of repair and regeneration, most notably their secretion of pro-regenerative paracrine factors. However, MSC clinical utility is hindered by poor survival rates post-transplantation due to the harsh microenvironment in injured tissue. Previous work has shown that the matricellular protein Tenascin-C (TNC) provides survival signaling to MSCs via the epidermal growth factor receptor by restricting its activation at the plasma membrane, resulting in enhanced prosurvival signals. Herein, we investigate how TNC influences MSC survival and MSC-mediated promotion of the wound healing process. This study examined the survival and angiogenic potential of MSCs cultured on TNC-coated surfaces under ischemic duress in vitro. We also assessed the angiogenic and wound healing outcomes of MSC + TNC in vivo using a CXCR3−/− mouse model that exhibits a delayed healing phenotype within the tissue replacement phase of repair. We found that MSCs in the presence of TNC exhibit higher levels of angiogenic-promoting processes, collagen maturation, and an overall better wound healing outcome than MSCs administered alone. This was seen in vitro in terms of enhanced tube formation. In vivo, the MSCs in the presence of TNC stabilized with a coacervate delivery system resulted in more regenerative wounds with accelerated maturation of the dermis. These findings suggest the coupling of TNC to MSCs as a promising tool for future MSC-ECM combinatorial therapies for wound healing applications.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1249-1260"},"PeriodicalIF":3.1000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3367","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Human mesenchymal stem cells/multipotent stromal cells (MSCs) hold great promise in aiding wound healing through their ability to modulate all phases of repair and regeneration, most notably their secretion of pro-regenerative paracrine factors. However, MSC clinical utility is hindered by poor survival rates post-transplantation due to the harsh microenvironment in injured tissue. Previous work has shown that the matricellular protein Tenascin-C (TNC) provides survival signaling to MSCs via the epidermal growth factor receptor by restricting its activation at the plasma membrane, resulting in enhanced prosurvival signals. Herein, we investigate how TNC influences MSC survival and MSC-mediated promotion of the wound healing process. This study examined the survival and angiogenic potential of MSCs cultured on TNC-coated surfaces under ischemic duress in vitro. We also assessed the angiogenic and wound healing outcomes of MSC + TNC in vivo using a CXCR3−/− mouse model that exhibits a delayed healing phenotype within the tissue replacement phase of repair. We found that MSCs in the presence of TNC exhibit higher levels of angiogenic-promoting processes, collagen maturation, and an overall better wound healing outcome than MSCs administered alone. This was seen in vitro in terms of enhanced tube formation. In vivo, the MSCs in the presence of TNC stabilized with a coacervate delivery system resulted in more regenerative wounds with accelerated maturation of the dermis. These findings suggest the coupling of TNC to MSCs as a promising tool for future MSC-ECM combinatorial therapies for wound healing applications.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.