Gregory R. Chambers, Dominic Dotterrer, Fedor Manin, S. Weinberger
{"title":"Quantitative null-cobordism","authors":"Gregory R. Chambers, Dominic Dotterrer, Fedor Manin, S. Weinberger","doi":"10.1090/jams/903","DOIUrl":null,"url":null,"abstract":"<p>For a given null-cobordant Riemannian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold, how does the minimal geometric complexity of a null-cobordism depend on the geometric complexity of the manifold? Gromov has conjectured that this dependence should be linear. We show that it is at most a polynomial whose degree depends on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the appendix the bound is improved to one that is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper L Superscript 1 plus epsilon Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(L^{1+\\varepsilon })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for every <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon >0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>This construction relies on another of independent interest. Take <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to be sufficiently nice compact metric spaces, such as Riemannian manifolds or simplicial complexes. Suppose <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is simply connected and rationally homotopy equivalent to a product of Eilenberg–MacLane spaces, for example, any simply connected Lie group. Then two homotopic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Lipschitz maps <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f comma g colon upper X right-arrow upper Y\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>g</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>Y</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f,g:X \\to Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are homotopic via a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C upper L\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mi>L</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">CL</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Lipschitz homotopy. We present a counterexample to show that this is not true for larger classes of spaces <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/903","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/903","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21
Abstract
For a given null-cobordant Riemannian nn-manifold, how does the minimal geometric complexity of a null-cobordism depend on the geometric complexity of the manifold? Gromov has conjectured that this dependence should be linear. We show that it is at most a polynomial whose degree depends on nn. In the appendix the bound is improved to one that is O(L1+ε)O(L^{1+\varepsilon }) for every ε>0\varepsilon >0.
This construction relies on another of independent interest. Take XX and YY to be sufficiently nice compact metric spaces, such as Riemannian manifolds or simplicial complexes. Suppose YY is simply connected and rationally homotopy equivalent to a product of Eilenberg–MacLane spaces, for example, any simply connected Lie group. Then two homotopic LL-Lipschitz maps f,g:X→Yf,g:X \to Y are homotopic via a CLCL-Lipschitz homotopy. We present a counterexample to show that this is not true for larger classes of spaces YY.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.