{"title":"On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow","authors":"U. Bader, P. Caprace, Jean L'ecureux","doi":"10.1090/JAMS/914","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a locally finite irreducible affine building of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than-or-equal-to 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\geq 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma less-than-or-equal-to upper A u t left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>Aut</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma \\leq \\operatorname {Aut}(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a discrete group acting cocompactly. The goal of this paper is to address the following question: When is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> linear? More generally, when does <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> admit a finite-dimensional representation with infinite image over a commutative unital ring? If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the Bruhat–Tits building of a simple algebraic group over a local field and if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an arithmetic lattice, then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is clearly linear. We prove that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is of type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A overTilde Subscript 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>A</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde {A}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then the converse holds. In particular, cocompact lattices in exotic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A overTilde Subscript 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>A</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde {A}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-buildings are nonlinear. As an application, we obtain the first infinite family of lattices in exotic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A overTilde Subscript 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>A</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde {A}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-buildings of arbitrarily large thickness, providing a partial answer to a question of W. Kantor from 1986. We also show that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is Bruhat–Tits of arbitrary type, then the linearity of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> implies that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is virtually contained in the linear part of the automorphism group of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>; in particular, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an arithmetic lattice. The proofs are based on the machinery of algebraic representations of ergodic systems recently developed by U. Bader and A. Furman. The implementation of that tool in the present context requires the geometric construction of a suitable ergodic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-space attached to the the building <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which we call the <italic>singular Cartan flow</italic>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2016-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/914","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/914","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20
Abstract
Let XX be a locally finite irreducible affine building of dimension ≥2\geq 2, and let Γ≤Aut(X)\Gamma \leq \operatorname {Aut}(X) be a discrete group acting cocompactly. The goal of this paper is to address the following question: When is Γ\Gamma linear? More generally, when does Γ\Gamma admit a finite-dimensional representation with infinite image over a commutative unital ring? If XX is the Bruhat–Tits building of a simple algebraic group over a local field and if Γ\Gamma is an arithmetic lattice, then Γ\Gamma is clearly linear. We prove that if XX is of type A~2\widetilde {A}_2, then the converse holds. In particular, cocompact lattices in exotic A~2\widetilde {A}_2-buildings are nonlinear. As an application, we obtain the first infinite family of lattices in exotic A~2\widetilde {A}_2-buildings of arbitrarily large thickness, providing a partial answer to a question of W. Kantor from 1986. We also show that if XX is Bruhat–Tits of arbitrary type, then the linearity of Γ\Gamma implies that Γ\Gamma is virtually contained in the linear part of the automorphism group of XX; in particular, Γ\Gamma is an arithmetic lattice. The proofs are based on the machinery of algebraic representations of ergodic systems recently developed by U. Bader and A. Furman. The implementation of that tool in the present context requires the geometric construction of a suitable ergodic Γ\Gamma-space attached to the the building XX, which we call the singular Cartan flow.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.